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INTRODUCTION

THE SUN AS A LABORATORY

▸ The interior of the Sun is an extreme environment, not found in terrestrial 
laboratories, and thus a natural scenario to search for new physics signatures.

▸ i.e., building a Solar Model and comparing with experiment allows viewing the 
Sun as a laboratory.
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Basu 2009, Villante 2010, Serenelli (2013)

Helioseismology – “sun-quakes” on the surface
which can tell us about the structure to the core.

Neutrinos– probe the temperature of the core.
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2002

Nobel prize 2002: the solar neutrino problem

Predicted Solar neutrino flux can not match measured solar neutrino flux
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THE SUN AS A LABORATORY
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2015

Solution – neutrino masses and oscillations

Hinted from solar measurements, proven terrestrially
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STANDARD SOLAR MODELS
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• Rcz – convection	zone
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• Sound	vel.	profile
• Neutrino	fluxes
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ASPLUND ET AL. (2009) SOLAR COMPOSITION REEVALUATION
▸ A downward revision in the abundance of some of the elements in the 

solar mixture, due to better solar atmosphere simulations, as well as 
meteorite data.
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THE SOLAR COMPOSITION PROBLEM
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Note: 4𝜎 deviation is just 1.5%...

A precision type of problem demands 
assessing uncertainties



WE TRY TO ANSWER THE FOLLOWING QUESTIONS
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HOW WELL DO WE UNDERSTAND MICROSCOPIC 
PHENOMENA IN THE SUN?

WHAT IS THE ORIGIN OF CURRENT UNCERTAINTY 
ESTIMATES?

CAN WE IMPROVE ON THESE?
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THE SOLAR ABUNDANCE PROBLEM

“IN THE NEWS”
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Krief, Feigel, DG, ApJ (2016a,b).
Krief, Feigel, Kurzweil, DG, ApJ (2017).
Segev, DG, Physica A (2018).
Krief, Segev, DG, in preparation.

MAJOR UNNOTICED UNCERTAINTIES IN 
SOLAR OPACITIES



THE SOLAR COMPOSITION PROBLEM

THE SOLAR COMPOSITION PROBLEM

12

~𝟑 − 𝟒𝝈	discrepancy!

Serenelli et	al	2013
Bailey,	J.	E.,	et	al.	2009

Mass,	Luminocity,	Age,
Composition

Standard	Solar
Model	(SSM)
• Rad-hyd
• 1d	mixing.
• Opacities
• Eqs.	of	state	(EOS)
• Nuclear	rates
• …..

• Rcz – convection	zone

• Ycz – Helium	abundance
• Sound	vel.	profile
• Neutrino	fluxes

input Output verified vs. 
Helioseismology & neutrinos

Equations and 
data bases



PROTON-PROTON FUSION IN THE SUN
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Deleon, DG (2019,2020a,b)
Deleon, Platter, DG (2016, 2019).



PROTON-PROTON FUSION IN THE SUN 14

Cannot be measured terrestrially – depends on 
theory

Very low proton-proton relative momentum (Erel~6 
keV).

Needed accuracy: ~1%.

the Sun and, as previously discussed, is now in conflict with
the SSM, when recent abundance determinations from 3D
photospheric absorption line analyses are used.

A. Rates and S factors

The SSM requires a quantitative description of relevant
nuclear reactions. Both careful laboratory measurements
constraining rates at near-solar energies and a supporting
theory of sub-barrier fusion reactions are needed.

At the temperatures and densities in the solar interior (e.g.,
Tc ! 15:5" 106 K and !c ! 153 g=cm3 at the Sun’s center),
interacting nuclei reach a Maxwellian equilibrium distribu-
tion in a time that is infinitesimal compared to nuclear
reaction time scales. Therefore, the reaction rate between
two nuclei can be written (Burbidge et al., 1957; Clayton,
1968)

r12 ¼
n1n2

1þ "12
h#vi12: (3)

Here the Kronecker delta prevents double counting in the case
of identical particles, n1 and n2 are the number densities of
nuclei of types 1 and 2 (with atomic numbers Z1 and Z2, and
mass numbers A1 and A2), and h#vi12 denotes the product
of the reaction cross section # and the relative velocity v of
the interacting nuclei, averaged over the collisions in the
stellar gas,

h#vi12 ¼
Z 1

0
#ðvÞv!ðvÞdv: (4)

Under solar conditions nuclear velocities are very well
approximated by a Maxwell-Boltzmann distribution. It fol-
lows that the relative velocity distribution is also a Maxwell-
Boltzmann, governed by the reduced mass $ of the colliding
nuclei,

!ðvÞdv ¼
!

$

2%kT

"
3=2

exp
!
'$v2

2kT

"
4%v2dv: (5)

Therefore,

h#vi12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

%$ðkTÞ3

s Z 1

0
E#ðEÞ exp

!
' E

kT

"
dE; (6)

where E is the relative kinetic energy and k is the Boltzmann
constant. In order to evaluate h#vi12, the energy dependence
of the reaction cross section must be determined.

Almost all of the nuclear reactions relevant to solar energy
generation are nonresonant and charged particle induced.
For such reactions it is helpful to remove much of the rapid
energy dependence associated with the Coulomb barrier,
by evaluating the probability of s-wave scattering off a point
charge. The nuclear physics (including effects of finite nu-
clear size, higher partial waves, antisymmetrization, and any
atomic screening effects not otherwise explicitly treated) is
then isolated in the S factor, defined by

#ðEÞ ¼ SðEÞ
E

exp½'2%&ðEÞ); (7)

with the Sommerfeld parameter &ðEÞ ¼ Z1Z2'=v, where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=$

p
is the relative velocity and ' the fine-structure

constant (ℏ ¼ c ¼ 1). Because the S factor is slowly varying,
one can extrapolate SðEÞ more reliably from the range of
energies spanned by data to the lower energies characterizing
the Gamow peak.

A substitution of Eq. (7) into Eq. (6) followed by a Taylor
expansion of the argument of the exponentials then yields
(Bahcall, 1989)

h#vi12¼
ffiffiffiffiffiffiffiffiffiffi
2

$kT

s
"E0

kT
f0Seff exp½'3E0=ðkTÞ)

¼1:301"10'14 cm3=s
!
Z1Z2

A

"
1=3

f0
Seff

MeVb
T'2=3
9

"exp½'3E0=ðkTÞ); (8)

where

E0

kT
¼ ð%Z1Z2'=

ffiffiffi
2

p
Þ2=3½$=ðkTÞ)1=3;

"E0

kT
¼ 4

ffiffiffiffiffiffiffiffiffi
E0

3kT

s
; A ¼ A1A2

A1 þ A2
;

and

Seff ¼ Sð0Þ
!
1þ 5kT

36E0

"
þ S0ð0ÞE0

!
1þ 35kT

36E0

"

þ 1

2
S00ð0ÞE2

0

!
1þ 89kT

36E0

"
:

E0, the Gamow peak energy where the integrand of Eq. (6)
takes on its maximum value, is the most probable energy of
reacting nuclei. "E0 corresponds to the full width of the
integrand at 1=e of its maximum value, when approximated
as a Gaussian. Equation (8) includes a factor f0, discussed
below, to correct for the effects of electronic screening on
nuclear reactions occurring in the solar plasma.

Rates in an astrophysical plasma can be calculated given
SðEÞ which by virtue of its slow energy dependence, in the
case of nonresonant reactions, can be approximated by its
zero-energy value Sð0Þ and possible corrections determined
by its first and second derivatives, S0ð0Þ and S00ð0Þ. It is these
quantities that we need to determine by fitting laboratory
data, or in cases where such data cannot be obtained, through
theory. For most of the reactions contributing to the pp
chain and CNO bicycle, data have been obtained only for
energies in regions above the Gamow peak, e.g., typically
E * 100 keV, so that extrapolations to lower energies de-
pend on the quality of the fit to higher-energy data. Ideally
one desires a fitting function that is well motivated theoreti-
cally and tightly constrained by the existing, higher-energy
data. The purpose of this review is to provide current best
values and uncertainties for Sð0Þ and, if feasible, its
derivatives.

S-factor uncertainties, when folded into SSM calculations,
then limit the extent to which that model can predict observ-
ables, such as the depth of the convective zone, the sound
speed profile, and the neutrino fluxes. It has become custom-
ary in the SSM to parametrize the consequences of input
uncertainties on observables through logarithmic partial
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Abstract. We review the results of the most recent calculation for the astrophysical S-factor
of the weak proton-proton capture reaction, over a range for the center-of-mass relative energy
of 0–100 keV. The so-called chiral effective field theory approach is used, where the chiral two-
nucleon potential is derived up to next-to-next-to-next-to leading order and is augmented by the
full electromagnetic interaction. The low-energy constants (LEC’s) entering the weak current
operators are fixed so as to reproduce the A = 3 binding energies and magnetic moments, and
the Gamow-Teller matrix element in tritium β-decay. Contributions from S and P partial waves
in the incoming two-proton channel are retained. The S-factor at zero energy is found to be ∼

1% larger than the value reported in the literature, mostly due to the P -waves contributions.

1. Introduction
The proton weak capture on protons, i.e., the reaction 1H(p, e+νe)2H (hereafter labelled pp), is
the most fundamental process in stellar nucleosynthesis: it is the first reaction in the pp chain,
which converts hydrogen into helium in main sequence stars like the Sun. Its reaction rate is
expressed in terms of the astrophysical S-factor, S(E), where E is the two-proton center-of-mass
(c.m.) energy, by the relation

S(E) = E exp(2π η)σ(E) , (1)

where η = α/vrel, α being the fine structure constant and vrel the pp relative velocity, and σ(E)
is the pp weak capture cross section. The energy-dependence of S(E) is often parametrized as [1]

S(E) = S(0) + S′(0)E + S′′(0)E2/2 + · · · , (2)

where S(0), S′(0) and S′′(0) are the zero-energy value of the S-factor, its first and second
derivatives, both evaluated at E = 0. At the center of light stars like the Sun, with temperature
of the order of 1.5 × 107 K, the Gamow peak is at E " 6 keV, while in larger-mass stars,
whose central temperature becomes of the order of 5 × 107 K, the Gamow peak turns out to
be E ∼ 15 keV. At these energies, the reaction cross section cannot be measured in terrestrial
laboratories, and it is necessary to rely on theoretical predictions. The many studies on S(0),
and the few for S′(0) and S′′(0), have been extensively reviewed in Ref. [1]. The currently
recommended value for S(0), (4.01 ± 0.01) × 10−23 MeV fm2 [1], is the average of values
obtained within three different approaches, the “potential model” approach (PMA), “hybrid
chiral effective field theory” (χEFT*) and “pionless effective field theory” (\πEFT). The first
one uses phenomenological realistic models for the nuclear potential, fitted to reproduce the
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Theory challenge: accuracy and precision

MOTIVATION: WEAK PROTON-PROTON FUSION IN THE SUN
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SFII – Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

in quadrature, we find that the current best estimates for
S11ð0Þ are

4:01ð1# 0:009Þ $ 10%25 MeV b potential models;

4:01ð1# 0:009Þ $ 10%25 MeV b EFT&;

3:99ð1# 0:030Þ $ 10%25 MeV b pionless EFT:

(24)

The larger uncertainty in the pionless EFT result is due to the
relatively weak constraints on L1;A that can be imposed within
two-nucleon systems, but, as mentioned, this situation will
soon be improved. The agreement of the central values
obtained in the potential model and EFT* indicates the
robustness of the results as long as the two-body current is
constrained by tritium ! decay. Meanwhile, the agreement of
the error estimates in the two approaches is primarily due to
the fact that, as explained above, the dominant part of the
uncertainty has been estimated using the same argument.
Based on the result obtained in the potential model and
EFT*, we adopt as the recommended value

S11ð0Þ ¼ 4:01ð1# 0:009Þ $ 10%25 MeV b: (25)

We adopt the Bahcall and May (1969) value for S011ð0Þ

S011ð0Þ ¼ S11ð0Þð11:2# 0:1Þ MeV%1: (26)

Bahcall and May (1969) also estimated dimensionally that
S0011ð0Þ would enter at the level of (1%, for temperatures
characteristic of the solar center. As this is now comparable to
the overall error in S11, we recommend that a modern calcu-
lation of S0011ð0Þ be undertaken.

IV. THE dðp;!Þ3He RADIATIVE-CAPTURE REACTION

The radiative capture of protons on deuterium is the second
reaction occurring in the pp chain. Because this reaction is so
much faster than the pp weak rate discussed in the previous
section, it effectively instantaneously converts deuterium to
3He, with no observable signature. Thus uncertainties in its
rate have no consequences for solar energy generation. By
comparing the pp and dðp;"Þ3He rates, one finds that the
lifetime of a deuterium nucleus in the solar core is (1 s, and
that the equilibrium abundance of deuterium relative to H is
maintained at (3$ 10%18.

However, the dðp;"Þ3He reaction plays a more prominent
role in the evolution of protostars. As a cloud of interstellar
gas collapses on itself, the gas temperature rises to the point
of dðp;"Þ3He ignition, (106 K. The main effect of the onset
of deuterium burning is to slow down the contraction and, in
turn, the heating. As a consequence, the lifetime of the
protostar increases and its observational properties (surface
luminosity and temperature) are frozen until the original
deuterium is fully consumed (Stahler, 1988). Because of the
slow evolutionary time scale, a large fraction of observed
protostars are in the d-burning phase, while only a few are
found in the earlier, cooler, rapidly evolving phase. A reliable
knowledge of the rate of dðp;"Þ3He down to a few keV (the

Gamow peak in a protostar) is of fundamental importance for
modeling protostellar evolution.

The pd reaction also plays an important role in big bang
nucleosynthesis, which begins when the early Universe has
cooled to a temperature of (100 keV. The uncertainty in the
pd reaction in the relevant energy window (25–120 keV)
propagates into uncertainties in the deuterium, 3He, and 7Li
abundances, scaling as

d

H
/ R%0:32

pd ;
3He

H
/ R0:38

pd ;
7Li

H
/ R0:59

pd ; (27)

where Rpd is the value of S12 relative to the fiducial value in

Cyburt (2004). Thus a 10% error in the pd capture rate
propagates into roughly 3.2%, 3.8%, and 5.9% uncertainties
in the light element primordial abundances, d, 3He, and 7Li,
respectively.

A. Data sets

The extensive experimental data sets for pd radiative
capture include total cross sections and spin polarization
observables at center-of-mass energies E ranging from sev-
eral tens of MeV to a few keV, covering all the relevant
astrophysical energies. In the regime E & 2 MeV (below
the deuteron breakup threshold), the relevant experimental
data include Griffiths et al. (1962, 1963), Bailey et al.
(1970), Schmid et al. (1995, 1996), Ma et al. (1997), and
Casella et al. (2002). The Griffiths et al. (1963) and Bailey
et al. (1970) low-energy data may be(15% too high because
of the use of incorrect stopping powers (Ma et al., 1997;
Schmid et al., 1995, 1996). Also, the Schmid et al. (1995),
(1996) data sets may have not propagated their energy-
dependent systematic uncertainties. In Fig. 3, the data for
S12 used for the best fit in Sec. IV.C are plotted together with
theoretical predictions of Marcucci et al. (2005). The ob-
served linear dependence of S12 on E at low energies as well
as the angular distributions of the cross section and polariza-
tion observables indicates that the dðp;"Þ3He reaction pro-
ceeds predominantly through s- and p-wave capture,
induced, respectively, by magnetic (M1) and electric (E1)
dipole transitions. The M1 transitions (proceeding through
2S1=2 and

4S3=2 pd channels) are especially interesting, as the

one-body M1 operator cannot connect the main s-state com-
ponents of the pd and 3He wave functions at low energies.
Because of this ‘‘pseudo-orthogonality,’’ only the small com-
ponents of the wave functions contribute in the impulse
approximation (IA). In contrast, as exchange current opera-
tors are not similarly hindered, their matrix elements are
exceptionally large relative to those obtained with the one-
body M1 operator. The suppression of matrix elements cal-
culated in the IA and their consequent enhancement by
exchange current contributions are a feature common to other
M1-induced processes in A ¼ 3 and 4 systems, such as the nd
and n3He radiative captures at thermal neutron energies.

B. Theoretical studies

The most extensive and recent theoretical studies of the
dðp;"Þ3He reaction at low energies have been carried out by
Marcucci et al. (2005). The calculated S12, shown in Fig. 3, is
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gas collapses on itself, the gas temperature rises to the point
of dðp;"Þ3He ignition, (106 K. The main effect of the onset
of deuterium burning is to slow down the contraction and, in
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luminosity and temperature) are frozen until the original
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SFII recommended value (2011):

Marcucci et al. χEFT:

Table 3. Cumulative S- and P -wave contributions to S(0) in units of 10−23 MeV fm2. The
results labelled “χEFT(500)” and “χEFT(600)” have been obtained within the χEFT approach
with two different cutoff values, 500 and 600 MeV. The results obtained within the PMA are
also shown. The theoretical uncertainties are given in parentheses and are due to the fitting
procedure adopted for the LEC’s (or g∗A within the PMA) in the weak current.

1S0 · · · + 3P0 · · · + 3P1 · · · + 3P2

χEFT(500) 4.008(5) 4.011(5) 4.020(5) 4.030(5)
χEFT(600) 4.007(5) 4.010(5) 4.019(5) 4.029(5)

PMA 4.000(3) 4.003(3) 4.015(3) 4.033(3)

In conclusion, the χEFT results of table 3 can be summarized in the conservative range
S(0) = (4.030±0.006)×10−23 MeV fm2, with a P -wave contribution of " 0.2×10−23 MeV fm2.

Finally, we show in figure 2 the energy dependence of S(E) in the energy range 2 – 100 keV,
as obtained within the χEFT approach. The S- and (S + P )-wave contributions are displayed
separately, and the theoretical uncertainty is included—the curves are in fact very narrow bands.
As expected, the P -wave contributions become significant at higher values of E. From these
results, a least-squares polynomial fit to S(E) has been performed up to order O(E2), i.e., by
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Figure 2. (Color online) Energy dependence of S(E) in the range 2 – 100 keV. The S- and
(S + P )-wave contributions are displayed separately. In the inset, S(E) is shown in the range
3–15 keV.
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FIG. 2. (Color online). The green band indicates the spread
of S(0)-values due to variations in Tmax

Lab used in the opti-
mization of the NNLO chiral force, as well as the propagated
statistical uncertainties of all LECs and gA, as a function of
the cuto↵ ⇤EFT in the �EFT. ⇤EFT was varied between 450
MeV and 600 MeV in steps of 25 MeV. The cuto↵ in the
current and the interaction sectors were always equal to each
other. This figure demonstrates that the S-factor is relatively
insensitive to reasonable variations in the cuto↵.

FIG. 3. (Color online). Correlation matrix of the zero-energy
S-factor (S(0)), the squared radial wave function overlap
(⇤2), and the ratio of the 2B and 1B current matrix elements
(�2B). We also show the correlations between theese quan-
tities and the ground state energies (E), point-proton radii
(rpt�p) for A = 2, 3, 4 nuclei as well as the matrix element of
the reduced axial-vector current (E1

A) of the triton �-decay
and the quadrupole moment (Q(2H)) and D-state probability
(D(2H)) of the deuteron.

tract those with the spline Jacobians extracted in this
work. A graphical representation of the relevant correla-
tions is shown in Fig. 3. This particular correlation ma-
trix is based on the NNLO interaction with ⇤EFT = 500
MeV and T

max
Lab = 290 MeV. The same pattern emerges

with any of the 42 di↵erent interactions employed in this
work. As expected from the Q-value dependence of the
phase space volume, the S-factor strongly anticorrelates
with the deuteron ground state energy. It is noteworthy

that the squared radial overlap ⇤2 of the deuteron and
relative-proton wave functions does not correlate signif-
icantly with S(0). This indicates that the dependence
of the S-factor on binding energy indeed occurs pre-
dominantly through the phase space. We also observe
that an increase in the deuteron radius would increase
the radial overlap with the proton-proton wave function.
The quadrupole moment of the deuteron and its D-state
probability anti-correlate with ⇤2. Here, it is important
to point out that our squared radial overlap only con-
tains the 1B piece of the current operator. Thus it only
measures the overlap between S-wave components. A
smaller D-state probability implies a larger S-state prob-
ability. Consequently, the anti-correlation between ⇤2

and Q(2H)/D(2H) mostly traces the same underlying S-
wave component of the deuteron wave function. Finally,
we observe a strong correlation between the strength of
the 2B current and the reduced axial-vector current of
the triton �-decay. In fact, the LEC cD plays a domi-
nant role for both currents. In conclusion, we quantify
all expected correlations and confirm that they emerge
in our statistical analysis.

IV. RESULTS AND DISCUSSION

We have calculated the pp-fusion S-factor using �EFT
and carried out a state-of-the-art uncertainty analysis by
employing a family of mathematically optimized chiral
potentials at NNLO with consistently renormalized cur-
rents. We focused on the threshold S-factor and have
therefore only considered initial S-wave pp scattering. To
O(↵), we obtain a threshold S-factor

S(0) = (4.081+0.024
�0.032) ⇥ 10�23 MeV fm2

, (19)

where we combined, for simplicity, all uncertainties
by adding them in quadrature, and then taking the
min/max values of the green band in Fig 2. This error
represents all uncertainties originating from �EFT, the
computational method, and the statistical extrapolation
to obtain the threshold value. The e↵ects of higher or-
der electromagnetic contributions that are proportional
to ↵

2 remains to be accounted for. These corrections
lower the threshold S-factor by about a percent [6, 7, 9].
From the energy dependence of these corrections, calcu-
lated in Ref. [6], we estimate a 0.84% reduction in S(0).
The inclusion of these electromagnetic e↵ects leaves the
uncertainties that are due to the strong interaction un-
changed, and the final result becomes

Scor(0) = (4.047+0.024
�0.032) ⇥ 10�23 MeV fm2

. (20)

For comparison, the uncertainty presented here is four
times larger than the estimate reported in the pioneer-
ing �EFT calculation in Ref [9]. The comparison of the
central values, however, is not so straightforward since
their calculation includes additional terms in the cur-
rent operator involving additional LECs, namely g4S and
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in quadrature, we find that the current best estimates for
S11ð0Þ are

4:01ð1# 0:009Þ $ 10%25 MeV b potential models;

4:01ð1# 0:009Þ $ 10%25 MeV b EFT&;

3:99ð1# 0:030Þ $ 10%25 MeV b pionless EFT:

(24)

The larger uncertainty in the pionless EFT result is due to the
relatively weak constraints on L1;A that can be imposed within
two-nucleon systems, but, as mentioned, this situation will
soon be improved. The agreement of the central values
obtained in the potential model and EFT* indicates the
robustness of the results as long as the two-body current is
constrained by tritium ! decay. Meanwhile, the agreement of
the error estimates in the two approaches is primarily due to
the fact that, as explained above, the dominant part of the
uncertainty has been estimated using the same argument.
Based on the result obtained in the potential model and
EFT*, we adopt as the recommended value

S11ð0Þ ¼ 4:01ð1# 0:009Þ $ 10%25 MeV b: (25)

We adopt the Bahcall and May (1969) value for S011ð0Þ

S011ð0Þ ¼ S11ð0Þð11:2# 0:1Þ MeV%1: (26)

Bahcall and May (1969) also estimated dimensionally that
S0011ð0Þ would enter at the level of (1%, for temperatures
characteristic of the solar center. As this is now comparable to
the overall error in S11, we recommend that a modern calcu-
lation of S0011ð0Þ be undertaken.

IV. THE dðp;!Þ3He RADIATIVE-CAPTURE REACTION

The radiative capture of protons on deuterium is the second
reaction occurring in the pp chain. Because this reaction is so
much faster than the pp weak rate discussed in the previous
section, it effectively instantaneously converts deuterium to
3He, with no observable signature. Thus uncertainties in its
rate have no consequences for solar energy generation. By
comparing the pp and dðp;"Þ3He rates, one finds that the
lifetime of a deuterium nucleus in the solar core is (1 s, and
that the equilibrium abundance of deuterium relative to H is
maintained at (3$ 10%18.

However, the dðp;"Þ3He reaction plays a more prominent
role in the evolution of protostars. As a cloud of interstellar
gas collapses on itself, the gas temperature rises to the point
of dðp;"Þ3He ignition, (106 K. The main effect of the onset
of deuterium burning is to slow down the contraction and, in
turn, the heating. As a consequence, the lifetime of the
protostar increases and its observational properties (surface
luminosity and temperature) are frozen until the original
deuterium is fully consumed (Stahler, 1988). Because of the
slow evolutionary time scale, a large fraction of observed
protostars are in the d-burning phase, while only a few are
found in the earlier, cooler, rapidly evolving phase. A reliable
knowledge of the rate of dðp;"Þ3He down to a few keV (the

Gamow peak in a protostar) is of fundamental importance for
modeling protostellar evolution.

The pd reaction also plays an important role in big bang
nucleosynthesis, which begins when the early Universe has
cooled to a temperature of (100 keV. The uncertainty in the
pd reaction in the relevant energy window (25–120 keV)
propagates into uncertainties in the deuterium, 3He, and 7Li
abundances, scaling as

d

H
/ R%0:32

pd ;
3He

H
/ R0:38

pd ;
7Li

H
/ R0:59

pd ; (27)

where Rpd is the value of S12 relative to the fiducial value in

Cyburt (2004). Thus a 10% error in the pd capture rate
propagates into roughly 3.2%, 3.8%, and 5.9% uncertainties
in the light element primordial abundances, d, 3He, and 7Li,
respectively.

A. Data sets

The extensive experimental data sets for pd radiative
capture include total cross sections and spin polarization
observables at center-of-mass energies E ranging from sev-
eral tens of MeV to a few keV, covering all the relevant
astrophysical energies. In the regime E & 2 MeV (below
the deuteron breakup threshold), the relevant experimental
data include Griffiths et al. (1962, 1963), Bailey et al.
(1970), Schmid et al. (1995, 1996), Ma et al. (1997), and
Casella et al. (2002). The Griffiths et al. (1963) and Bailey
et al. (1970) low-energy data may be(15% too high because
of the use of incorrect stopping powers (Ma et al., 1997;
Schmid et al., 1995, 1996). Also, the Schmid et al. (1995),
(1996) data sets may have not propagated their energy-
dependent systematic uncertainties. In Fig. 3, the data for
S12 used for the best fit in Sec. IV.C are plotted together with
theoretical predictions of Marcucci et al. (2005). The ob-
served linear dependence of S12 on E at low energies as well
as the angular distributions of the cross section and polariza-
tion observables indicates that the dðp;"Þ3He reaction pro-
ceeds predominantly through s- and p-wave capture,
induced, respectively, by magnetic (M1) and electric (E1)
dipole transitions. The M1 transitions (proceeding through
2S1=2 and

4S3=2 pd channels) are especially interesting, as the

one-body M1 operator cannot connect the main s-state com-
ponents of the pd and 3He wave functions at low energies.
Because of this ‘‘pseudo-orthogonality,’’ only the small com-
ponents of the wave functions contribute in the impulse
approximation (IA). In contrast, as exchange current opera-
tors are not similarly hindered, their matrix elements are
exceptionally large relative to those obtained with the one-
body M1 operator. The suppression of matrix elements cal-
culated in the IA and their consequent enhancement by
exchange current contributions are a feature common to other
M1-induced processes in A ¼ 3 and 4 systems, such as the nd
and n3He radiative captures at thermal neutron energies.

B. Theoretical studies

The most extensive and recent theoretical studies of the
dðp;"Þ3He reaction at low energies have been carried out by
Marcucci et al. (2005). The calculated S12, shown in Fig. 3, is
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constrained by tritium ! decay. Meanwhile, the agreement of
the error estimates in the two approaches is primarily due to
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Based on the result obtained in the potential model and
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The radiative capture of protons on deuterium is the second
reaction occurring in the pp chain. Because this reaction is so
much faster than the pp weak rate discussed in the previous
section, it effectively instantaneously converts deuterium to
3He, with no observable signature. Thus uncertainties in its
rate have no consequences for solar energy generation. By
comparing the pp and dðp;"Þ3He rates, one finds that the
lifetime of a deuterium nucleus in the solar core is (1 s, and
that the equilibrium abundance of deuterium relative to H is
maintained at (3$ 10%18.

However, the dðp;"Þ3He reaction plays a more prominent
role in the evolution of protostars. As a cloud of interstellar
gas collapses on itself, the gas temperature rises to the point
of dðp;"Þ3He ignition, (106 K. The main effect of the onset
of deuterium burning is to slow down the contraction and, in
turn, the heating. As a consequence, the lifetime of the
protostar increases and its observational properties (surface
luminosity and temperature) are frozen until the original
deuterium is fully consumed (Stahler, 1988). Because of the
slow evolutionary time scale, a large fraction of observed
protostars are in the d-burning phase, while only a few are
found in the earlier, cooler, rapidly evolving phase. A reliable
knowledge of the rate of dðp;"Þ3He down to a few keV (the

Gamow peak in a protostar) is of fundamental importance for
modeling protostellar evolution.

The pd reaction also plays an important role in big bang
nucleosynthesis, which begins when the early Universe has
cooled to a temperature of (100 keV. The uncertainty in the
pd reaction in the relevant energy window (25–120 keV)
propagates into uncertainties in the deuterium, 3He, and 7Li
abundances, scaling as
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propagates into roughly 3.2%, 3.8%, and 5.9% uncertainties
in the light element primordial abundances, d, 3He, and 7Li,
respectively.

A. Data sets

The extensive experimental data sets for pd radiative
capture include total cross sections and spin polarization
observables at center-of-mass energies E ranging from sev-
eral tens of MeV to a few keV, covering all the relevant
astrophysical energies. In the regime E & 2 MeV (below
the deuteron breakup threshold), the relevant experimental
data include Griffiths et al. (1962, 1963), Bailey et al.
(1970), Schmid et al. (1995, 1996), Ma et al. (1997), and
Casella et al. (2002). The Griffiths et al. (1963) and Bailey
et al. (1970) low-energy data may be(15% too high because
of the use of incorrect stopping powers (Ma et al., 1997;
Schmid et al., 1995, 1996). Also, the Schmid et al. (1995),
(1996) data sets may have not propagated their energy-
dependent systematic uncertainties. In Fig. 3, the data for
S12 used for the best fit in Sec. IV.C are plotted together with
theoretical predictions of Marcucci et al. (2005). The ob-
served linear dependence of S12 on E at low energies as well
as the angular distributions of the cross section and polariza-
tion observables indicates that the dðp;"Þ3He reaction pro-
ceeds predominantly through s- and p-wave capture,
induced, respectively, by magnetic (M1) and electric (E1)
dipole transitions. The M1 transitions (proceeding through
2S1=2 and

4S3=2 pd channels) are especially interesting, as the

one-body M1 operator cannot connect the main s-state com-
ponents of the pd and 3He wave functions at low energies.
Because of this ‘‘pseudo-orthogonality,’’ only the small com-
ponents of the wave functions contribute in the impulse
approximation (IA). In contrast, as exchange current opera-
tors are not similarly hindered, their matrix elements are
exceptionally large relative to those obtained with the one-
body M1 operator. The suppression of matrix elements cal-
culated in the IA and their consequent enhancement by
exchange current contributions are a feature common to other
M1-induced processes in A ¼ 3 and 4 systems, such as the nd
and n3He radiative captures at thermal neutron energies.
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The weak proton-proton fusion into a deuteron (2H) is the driving reaction in the energy pro-
duction in the Sun, as well as similar main sequence stars. Its reaction rate in solar interior is
determined only theoretically. Here, we provide a new determination of the rate of this reaction in
solar conditions S11(0), and analyze theoretical and experimental sources for uncertainties, using
e↵ective field theory of quantum chromo-dynamics without explicit pions at next-to-leading order.
We find an enhancement of S11 by 3�7% over the previous recommended value. This enhancement
is driven by a recent upward revision of the axial constant of the nucleon gA. We study the e↵ect
of this enhancement on solar observables. Particularly, we find that the calculated flux of neutrinos
originating in 8B decay underestimates the measured flux by about 25%. The e↵ect of this new
determination on solar observables is non-negligible and can be compensated by other parameters,
such as solar opacity, in a way that reduces the solar composition problem.

The evolution of the Sun, as well as other main se-
quence stars, remains one of the main theoretical ques-
tions in astrophysics. Our comprehensive understand-
ing of this evolution has been used as a tool to reach
many discoveries in other branches of physics, heralded
by the discovery of the mass of the neutrino. The en-
ergy generated in the Sun comes from an exothermic set
of reactions, the proton-proton (pp) chain, by fusing four
Hydrogen ions into 4He. The chain is initiated by the pp-
fusion reaction: p+ p ! d+ e+ + ⌫e, which rules 99.76%
of the proton reactions. The pp-fusion is a result of by
the weak interaction, which makes it the slowest reaction
in the chain (⌧ ⇠ 109 years), and therefore it determines
the Sun’s lifetime. However, its slow rate and low charac-
teristic energy make the measurement of its cross-section
impossible, so it must be calculated theoretically.

The fusion cross-section, �pp = S
11(E)
E

exp[�2⇡⌘(E)],
consists of both the long-range Coulomb factor (⌘(E)),
and the short-range astrophysical S-factor (S11(E)),
where E is the kinetic energy of the center of mass of
the interacting protons, dictated by the temperature. In
solar conditions, the magnitude of E is only a few keV
and therefore S11(E) can be expanded in a power se-

ries in E such that: S11(E) = S11(0) + dS
11(E)
dE

E + ....
At these low energies, compared to nuclear characteris-
tic energies, this series expansion is dominated by the
E = 0 threshold value, i.e., S11(0) which is proportional
to ⇤2

pp
(0), the square of the pp-fusion matrix element.

The relevant theory of physics at these energies is
Quantum ChromoDynamics (QCD). The challenge in
theoretical calculation of the pp-fusion matrix element
stems from the non-perturbative character of QCD at
the nuclear regime which makes a direct calculation non-
trivial. This has led to many theoretical e↵orts to calcu-
late the reaction rate.

In 1969, Bahcall and May have found that ⇤2
pp
(0) =

7.08 [? ? ? ? ], using standard nuclear physics e↵ective
range expansion (ERE). A review of all recent calcula-
tions of S11(0) appeared in 2011, by Adelberger et al. [?

], and recommended to use the value

S11(0) = (4.011± 0.04) · 10�23 MeV · fm2
·

✓
(ft)0+!0+

3071.4sec

◆�1 ⇣ gA
1.2695

⌘2
 

fR
pp

0.144

! 
⇤2
pp

7.035

!
,

(1)

representing an agreement between three di↵erent theo-
retical approaches that existed at that time. Where gA is
the axial charge of the nucleon which is determined from
neutron half-life, (ft)0+!0+ is the value for superallowed
0+ ! 0+ transitions that has been determined from a
comprehensive analysis of experimental rates corrected
for radiative and Coulomb e↵ects [? ]. The phase-space
factor fR

pp
takes into account 1.62% increase due to ra-

diative corrections to the cross section [? ].
However, in 2013, Marcucci et al. calculations for

proton energies up to 100 keV [? ], have yielded
S11(0) = (4.03 ± 0.0006) · 10�23 MeV · fm2, using the
consistency of three-nucleon forces and two-body axial
currents [? ], while Acharya et al. recently yielded

S(0) =
�
4.047+0.024

�0.032

�
⇥ 10�23MeV · fm2

[? ]. In 2017, the Nuclear Physics with Lat-
tice Quantum Chromo Dynamics (NPLQCD)
collaboration has calculated: SLQCD

11 (0) =
4.029(0.006)(0.03)(0.012)(0.027) ⇥ 10�23MeV · fm2

[? ], where the four uncertainties are the statistical un-
certainty, the fitting and analysis systematic uncertainty,
the mass extrapolation systematic uncertainty, and a
power-counting estimate of higher order corrections in
⇡/EFT , respectively.

In addition, Eq. (1) implies that S11(0) depends on the
value of gA, At 2014, the Particle Data Group (PDG)
have estimated gA = 1.2701(25). This ratio contr-
ridet other estimations of gA: gA = 1.2695 [? ] and
gA = 1.2766(25)(05) [? ]. This uncertainty, which is
an important element of the pp-fusion rate uncertainties,
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impossible, so it must be calculated theoretically.
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consists of both the long-range Coulomb factor (⌘(E)),
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E = 0 threshold value, i.e., S11(0) which is proportional
to ⇤2

pp
(0), the square of the pp-fusion matrix element.

The relevant theory of physics at these energies is
Quantum ChromoDynamics (QCD). The challenge in
theoretical calculation of the pp-fusion matrix element
stems from the non-perturbative character of QCD at
the nuclear regime which makes a direct calculation non-
trivial. This has led to many theoretical e↵orts to calcu-
late the reaction rate.

In 1969, Bahcall and May have found that ⇤2
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(0) =
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range expansion (ERE). A review of all recent calcula-
tions of S11(0) appeared in 2011, by Adelberger et al. [?

], and recommended to use the value

S11(0) = (4.011± 0.04) · 10�23 MeV · fm2
·

✓
(ft)0+!0+

3071.4sec

◆�1 ⇣ gA
1.2695

⌘2
 

fR
pp

0.144

! 
⇤2
pp

7.035

!
,

(1)

representing an agreement between three di↵erent theo-
retical approaches that existed at that time. Where gA is
the axial charge of the nucleon which is determined from
neutron half-life, (ft)0+!0+ is the value for superallowed
0+ ! 0+ transitions that has been determined from a
comprehensive analysis of experimental rates corrected
for radiative and Coulomb e↵ects [? ]. The phase-space
factor fR

pp
takes into account 1.62% increase due to ra-

diative corrections to the cross section [? ].
However, in 2013, Marcucci et al. calculations for

proton energies up to 100 keV [? ], have yielded
S11(0) = (4.03 ± 0.0006) · 10�23 MeV · fm2, using the
consistency of three-nucleon forces and two-body axial
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[? ]. In 2017, the Nuclear Physics with Lat-
tice Quantum Chromo Dynamics (NPLQCD)
collaboration has calculated: SLQCD
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4.029(0.006)(0.03)(0.012)(0.027) ⇥ 10�23MeV · fm2

[? ], where the four uncertainties are the statistical un-
certainty, the fitting and analysis systematic uncertainty,
the mass extrapolation systematic uncertainty, and a
power-counting estimate of higher order corrections in
⇡/EFT , respectively.

In addition, Eq. (??) implies that S11(0) depends
on the value of gA, At 2014, the Particle Data Group
(PDG) have estimated gA = 1.2701(25). This ratio con-
trridet other estimations of gA: gA = 1.2695 [? ] and
gA = 1.2766(25)(05) [? ]. This uncertainty, which is
an important element of the pp-fusion rate uncertainties,
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Nuclear scales

Beyond models: rigor and consistency in modern nuclear theory – p. 12

QCD scales Probe momentum cEFT: Acharya et al, Marcucci et al, calculations:

Many parameters ~ 25-40 (pions, nucleons, 
contacts).

Non-renormalizable – theory depends on the 
cutoff, questionable order by order convergence.

Challenging to assess systematic uncertainties.

Weinberg (1991), van-Kolck (1992), 
Kaplan (1996)…
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CAN WE VALIDATE AND VERIFY THESE RESULTS?

CAN WE ESTIMATE “SYSTEMATIC” UNCERTAINTIES? 

Use pion-less EFT
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Nuclear scales

Beyond models: rigor and consistency in modern nuclear theory – p. 12

QCD scales Probe momentum

Pion-less EFT at NLO
Natural for description of A=2, 3 bound states. 

Natural for the energy regime of pp fusion and 
triton decay 

Small number of parameters

Renormalizable

NLO/LO ratio will be used to assess uncertainties.

A different model than cEFT – good for V&V!

Weinberg (1991), van-Kolck (1992), 
Kaplan (1996)…

3H→3 He + e− +νe

e
en e

en

n→ p + e− +νe

e

νe

p + p→ d +νe + e
+

Use 3H decay to fix 2-body strength L1A
and predict pp fusion



PIONLESS EFT @ NLO 

A FULLY PERTURBATIVE PIONLESS EFT A=2, 3 CALCULATION @NLO

▸ 5 Leading Order Parameters 

▸ nn and 2-np Scattering lengths: 3S1, 1S0

▸ pp scattering length.

▸ Three body force strength to prevent Thomas collapse.

▸ 5 Next-to Leading Order parameters:

▸ effective ranges: 

▸ Renormalizations of pp scattering length and 3NF.

▸ isospin dependent 3NF to prevent logarithmic divergence in the binding 
energy of 3He.

▸ Only 3H and 3He binding energies are “many-body” parameters. All the rest-
very well experimentally known scattering parameters.
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from experimental data [8, 9] or using Lattice QCD sim-
ulations [10].

Indeed, in the field theoretical formalization of ⇡/EFT ,
wave-functions are a result of a loop integration over all
the possible momenta with a cuto↵ ⇤ [4, 5, 11, 12]. It
can be analytically and numerically shown that the so-
lution of the A = 3 integral equations reveals a strong
dependence on the cuto↵, resulting in the addition of a
one-parameter 3-body force counter-term, H(⇤), already
at leading order (LO) [4, 5], to assure renormalization
group (RG) invariance. A recent surge in the study of
realistic nuclei using ⇡/EFThas shown that an additional
counter-term is needed to ensure RG invariance at next-
to-leading order (NLO), when the Coulombic repulsion
between protons is considered [13]. In this work, we fo-
cus on the question whether the magnetic structure of
A = 2 and A = 3 systems can be described successfully
with such a simple theory, consistent with the di↵erences
between A = 2 and A = 3 systems, or should many-body
counter term be introduced to assure RG invariance sim-
ilar to those in the strong Hamiltonian. We make use
of our recently developed renormalization group invari-
ant method to calculate A = 3 matrix elements within
⇡/EFT [14] to study simultaneously A = 2 and A = 3
M1 properties beyond LO. We introduce a novel method
for assessing the theoretical uncertainty due to this EFT
truncation, utilizing the perturbative property of this ap-
proach. Moreover, we study di↵erent ways to implement
the perturbative expansion of ⇡/EFT to next-to-leading
order (NLO), roughly similar to choosing di↵erent ex-
pansion points inside the convergence radius of a Tay-
lor expansion, and show improvement in the convergence
pattern of one of the choices over the others. Finally,
we show that a simultaneous statistical analysis hints to-
wards a possible connection between ⇡/EFTand the pion,
which is the lightest QCD excitation, that originates in
chiral symmetry breaking. Such connection, which to our
knowledge is found here for the first time, can shed light
on the nature of the renormalization group flow of QCD
to ⇡/EFT , through EFTs with higher breakdown scale,
such as chiral EFT, which is needed to study heavier nu-
clei.

To this end, we examine the four well-measured low-
energy magnetic “M1” reactions, i.e. the magnetic mo-
ments of the bound nuclei hµ̂di, hµ̂3Hi and hµ̂3Hei [15, 16],
and the cross-section �np for the radiative capture n +
p ! d + � for thermal neutrons [17]. Previous studies
using phenomenological approach to nuclear physics (see
a recent review in Ref. [18]) and using chiral EFT [19],
however do not allow to study the reactions in a consis-
tent perturbative approach, as well as from RG perspec-
tive. Within the ⇡/EFT framework, a large body of work
has been done on the A = 2 aforementioned observables,
with particular emphasis on �np, due to its relevance to
big-bang nucleosynthesis in energy regimes characterized
by large experimental uncertainties [20–24]. Recently,
exploratory studies of the A = 3 magnetic M1 calcu-
lations, either to small cuto↵s in a configuration space

Schrödinger equation representation of ⇡/EFT [25], or
without including the Coulomb interactions for 3He [26].
As a result of the approximations, these studies could not
approach the aforementioned questions.

II. SETTING UP ⇡/EFTTO NEXT-TO-LEADING
ORDER

At LO, the two-body ⇡/EFTLagrangian is minimally
built with Su(2) nucleon filed to reproduce the bound
spin-triplet channel (t, Deuteron) binding momentum,
�t ⇠ O(Q) and the unbound spin-singlet channel, s, scat-
tering length, as ⇠ O(1/Q)). These values are unnatu-
ral compared to the QCD excitations (specifically, com-
pared to the pion mass), and are the signature of the
“strength” of the strong interaction, i.e., of the unnatu-
rally large cross-section compared to the nuclear matter-
radius. Details of the interaction enter at NLO, through
its e↵ective range in the triplet and singlet channels, ⇢t
and ⇢s, respectively, which scale as O(1/⇤b). Clearly,
the nuclear system at low energies is characterized by
the properties of two-body clusters, thus, it is convenient
to use a Hubbard-Stratonovich (H-S) transformation to
equivalently reformulate ⇡/EFTwith dynamical dibaryon
fields alongside with the nucleon filed [27, 28]. The fields,
t and s, have quantum numbers of two coupled nucle-
ons in an S-wave spin-triplet and -singlet state, respec-
tively. This simplifies the calculation of a three-body am-
plitude by turning it into an e↵ective two-body scattering
problem of a dibaryon and a nucleon (see, for example,
Refs. [27, 28]).

This explanation clearly entails that the e↵ective
ranges vanish at LO, and receive a finite value at NLO.
For the unbound spin-singlet state the natural choice
is called e↵ective-range (ER) parameterization in which
⇢s = 0|{z}

LO

+ ⇢
exp
s|{z}

NLO

, where ⇢
exp
s

is the experimental value.

However, for the bound triplet channel, there is another
useful choice for its e↵ective range value at NLO. Since it
is bound, the long-range properties of the Deuteron wave
function can be set by a quantity Zd, defined through
the Deuteron asymptotic S-state normalization, AS , such
that AS ⌘

p
2�tZd, and Zd = 1

1��t⇢t
⇡ 1 + �t⇢t. The

latter expansion is to NLO, in the ER-parameterization.
The alternative arrangement of the ⇡/EFT is called Z-
paramereization, and it fixes Zd to its experimental value
at NLO, i.e., Z

NLO
d

= Z
exp
d

⇡ 1.690(3), while ⇢t is

subsequently derived to be, ⇢
Z
t

⇡ 0|{z}
LO

+
Z

exp
d

� 1

�t| {z }
NLO

=

2.976(5) fm, deviating significantly from its physical value
(see Tab. I). [29–34]. It was shown that this choice re-
covers elastic scattering data better and converges faster
in the EFT expansion [32, 35].
In the following, we use both NLO parameterizations,

check that they are RG invariant and compare them in
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	𝑔*

𝐿,*

axial coupling constant, “known” from neutron 𝛽 decay. 

2-body analogue of 𝑔*, we fix it from 3H decay rate.

2

underlying theory, e.g., lattice QCD calculations [13, 14],
or by fitting to low-energy experiments.

Recently, a calculation of S11 for proton energies up to
100 keV was calculated [15], using “chiral” EFT (�EFT )
potentials. A state-of-the-art calculation led to a recom-
mendation of S11(0) = (4.03 ± 0.0015) · 10�23 MeV fm2,
using the consistency of three nucleon forces and two-
body axial currents [16]. The uncertainty, which is al-
most an order of magnitude better than previous recom-
mendation, is based only on the di↵erence between the
two variants of �EFTpotentials.

The renormalizability, which ensures cuto↵ indepen-
dence, the small number of parameters as well as their
obvious relation to measured quantities, e.g., nucleon-
nucleon scattering length and e↵ective ranges, and the
natural pertubative expansion make ⇡/EFT ideal for pre-
dictions of low energy nuclear reactions with reliable un-
certainty estimates. This makes pp-fusion an ideal case
for ⇡/EFT [17], however, an obstacle is found in the cali-
bration of a next-to-leading order two-body low-energy-
constant L1,A, which is the strength an axial probe cou-
ples to a contact of two nucleons [17]. L1,A appears in any
weak reaction with a Gamow-Teller contribution. How-
ever, at the two body level the constraints are not ideal.
In particular, the stringent consistent constraint to date
comes from ⌫̄ � d scattering [17, 18], a fact which lim-
ited the prediction accuracy of ⇡/EFT for solar pp-fusion
[19, 20].

In the current letter, we progress on several fronts of
this pivot nuclear astrophysics theoretical challenge. For
the first time, we calculate a three body weak � de-
cay, namely 3H !

3 He + ⌫̄e + e
�, and use it to fix the

two-body-contact L1,A, needed to predict pp-fusion rate.
We complement the prediction with theoretical uncer-
tainty, as well as experimental systematic uncertainty,
which is substantially larger than previously estimated,
due to contradicting measurements of the axial constant
of the nucleon gA, leading to systematic uncertainty be-
tween PDG recommended value gA = 1.2701(25) [21] and
newer estimates gA = 1.2756(30) [22], gA = 1.2761

�
+14

�17

�

[23] and gA = 1.2766(25)(05)[24].
Calculation of weak nuclear reaction rates includes the

evaluation of matrix elements of the weak nuclear cur-
rent between initial and final nuclear wave function. The
weak current includes a polar vector part V(a)

µ , which in
the standard model is an isospin rotation of the iso-vector
electromagnetic current to iso-spin projection a = 0, ±1,

as well as an axial vector part A
(a)

µ . Additional sim-
plification is achieved by considering the low momen-
tum transfer q compared to the nuclear length scale,
e.g., r.m.s radius R ⇡ 1 fm, in both pp-fusion, where
the momenta of the protons is dictated by solar tem-
perature kBT ⇡ 1.5 keV, i.e., qR ⇡

p
2MkBTR ⇡ 0.8

(M ⇡ 939MeV/c2 is the mass of the nucleon), and 3H
decay, where q is smaller than the Q-value of the decay
(⇡ 20 keV), i.e., qR . 10�4. In these kinematics, the

conservation of vector current hypothesis simplifies the
weak interaction polar-vector current to the Fermi op-

erator V
(a)

0
= F =

P
A

i=1
⌧
(a)

i
, i.e. a sum of the isospin

lowering, raising or projection of each of the A nucle-
ons in the nucleus, and the axial-vector is given by a
Gamow-Teller (GT) operator, which is usually written
in a form that neglects correlations between the nucleons
~A
(a) = ~GT

(a)

= �gA

P
A

i=1
~�i⌧

(a)

i
(~�i is the spin oper-

ator of the i-th nucleon). The low momentum transfer
suggests that the protons in pp-fusion are essentially in
relative s-wave angular momentum (p-wave relative state
contributes at the few per-mille level to the cross section
[15]). As a result, S

11(0) and the comparative triton
half-life (fT1/2)t[25], are computed in the following way

(fT1/2)t =
2(fT1/2)0+!0+

h3HekF(+)
k3Hi2 + fA

fV
h3HekGT(+)

k3Hi2
,

(2)

S
11(0) = 4.01. (3)

Here, (fT1/2)0+!0+ = 3071.4 ± 0.8s [26], and
fA/fV = 1.00529 [27] accounts for the small di↵er-
ence in the statistical rate function between vector and
axial-vector transitions. The comparative half-life of
the triton (fT1/2)t = 1129.6 ± 3.0, together with a
theoretical estimate for the minor (about one per-mille)
isospin breaking e↵ect in the F transition, an empirical
value

GTn = hnkGT(�)
kpi =

p
3 · ( 1

gA
)

GTemp

3H
= h

3HkGT(�)
k
3Hei =

p
3 · ( 1.213±0.002

gA
)

This value allows to quantify the many-nucleon weak
correlations in this transition, which, augmented by a
theory for these correlations, can be used to predict
S
11(0) [15, 27, 28].
In order to accomplish this consistently, one needs to

connect the many-body weak correlations consistently
to QCD. Here, we use ⇡/EFT to next-to-leading order
(NLO). We solve the nuclear problem as a scattering
problem. A simplification is achieved by using Hubbard-
Stratonovich transformation, introducing an auxiliary
di-baryon field into the NLO microscopic Lagrangian
[29, 30].
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The nuclear system at low-energies is characterized by
the properties of two body clusters, i.e., the scattering
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In the current letter, we progress on several fronts of
this pivot nuclear astrophysics theoretical challenge. For
the first time, we calculate a three body weak � de-
cay, namely 3H !

3 He + ⌫̄e + e
�, and use it to fix the

two-body-contact L1,A, needed to predict pp-fusion rate.
We complement the prediction with theoretical uncer-
tainty, as well as experimental systematic uncertainty,
which is substantially larger than previously estimated,
due to contradicting measurements of the axial constant
of the nucleon gA, leading to systematic uncertainty be-
tween PDG recommended value gA = 1.2701(25) [21] and
newer estimates gA = 1.2756(30) [22], gA = 1.2761
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[23] and gA = 1.2766(25)(05)[24].
Calculation of weak nuclear reaction rates includes the

evaluation of matrix elements of the weak nuclear cur-
rent between initial and final nuclear wave function. The
weak current includes a polar vector part V(a)

µ , which in
the standard model is an isospin rotation of the iso-vector
electromagnetic current to iso-spin projection a = 0, ±1,

as well as an axial vector part A
(a)

µ . Additional sim-
plification is achieved by considering the low momen-
tum transfer q compared to the nuclear length scale,
e.g., r.m.s radius R ⇡ 1 fm, in both pp-fusion, where
the momenta of the protons is dictated by solar tem-
perature kBT ⇡ 1.5 keV, i.e., qR ⇡

p
2MkBTR ⇡ 0.8

(M ⇡ 939MeV/c2 is the mass of the nucleon), and 3H
decay, where q is smaller than the Q-value of the decay
(⇡ 20 keV), i.e., qR . 10�4. In these kinematics, the

conservation of vector current hypothesis simplifies the
weak interaction polar-vector current to the Fermi op-

erator V
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i
, i.e. a sum of the isospin

lowering, raising or projection of each of the A nucle-
ons in the nucleus, and the axial-vector is given by a
Gamow-Teller (GT) operator, which is usually written
in a form that neglects correlations between the nucleons
~A
(a) = ~GT
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(~�i is the spin oper-

ator of the i-th nucleon). The low momentum transfer
suggests that the protons in pp-fusion are essentially in
relative s-wave angular momentum (p-wave relative state
contributes at the few per-mille level to the cross section
[15]). As a result, S

11(0) and the comparative triton
half-life (fT1/2)t[25], are computed in the following way

(fT1/2)t =
2(fT1/2)0+!0+

h3HekF(+)
k3Hi2 + fA

fV
h3HekGT(+)
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,

(2)

S
11(0) = 4.01. (3)

Here, (fT1/2)0+!0+ = 3071.4 ± 0.8s [26], and
fA/fV = 1.00529 [27] accounts for the small di↵er-
ence in the statistical rate function between vector and
axial-vector transitions. The comparative half-life of
the triton (fT1/2)t = 1129.6 ± 3.0, together with a
theoretical estimate for the minor (about one per-mille)
isospin breaking e↵ect in the F transition, an empirical
value
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kpi =
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3 · ( 1
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GTemp
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= h
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k
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)

This value allows to quantify the many-nucleon weak
correlations in this transition, which, augmented by a
theory for these correlations, can be used to predict
S
11(0) [15, 27, 28].
In order to accomplish this consistently, one needs to

connect the many-body weak correlations consistently
to QCD. Here, we use ⇡/EFT to next-to-leading order
(NLO). We solve the nuclear problem as a scattering
problem. A simplification is achieved by using Hubbard-
Stratonovich transformation, introducing an auxiliary
di-baryon field into the NLO microscopic Lagrangian
[29, 30].

SETTING UP ⇡/EFTTO NEXT-TO-LEADING

ORDER

The nuclear system at low-energies is characterized by
the properties of two body clusters, i.e., the scattering
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axial coupling constant, “known” from neutron 𝛽 decay. 

2-body analogue of 𝑔*, we fix it from 3H decay rate.
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which is substantially larger than previously estimated,
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tween PDG recommended value gA = 1.2701(25) [21] and
newer estimates gA = 1.2756(30) [22], gA = 1.2761

�
+14

�17

�

[23] and gA = 1.2766(25)(05)[24].
Calculation of weak nuclear reaction rates includes the

evaluation of matrix elements of the weak nuclear cur-
rent between initial and final nuclear wave function. The
weak current includes a polar vector part V(a)

µ , which in
the standard model is an isospin rotation of the iso-vector
electromagnetic current to iso-spin projection a = 0, ±1,

as well as an axial vector part A
(a)

µ . Additional sim-
plification is achieved by considering the low momen-
tum transfer q compared to the nuclear length scale,
e.g., r.m.s radius R ⇡ 1 fm, in both pp-fusion, where
the momenta of the protons is dictated by solar tem-
perature kBT ⇡ 1.5 keV, i.e., qR ⇡

p
2MkBTR ⇡ 0.8

(M ⇡ 939MeV/c2 is the mass of the nucleon), and 3H
decay, where q is smaller than the Q-value of the decay
(⇡ 20 keV), i.e., qR . 10�4. In these kinematics, the

conservation of vector current hypothesis simplifies the
weak interaction polar-vector current to the Fermi op-

erator V
(a)

0
= F =

P
A

i=1
⌧
(a)

i
, i.e. a sum of the isospin

lowering, raising or projection of each of the A nucle-
ons in the nucleus, and the axial-vector is given by a
Gamow-Teller (GT) operator, which is usually written
in a form that neglects correlations between the nucleons
~A
(a) = ~GT

(a)

= �gA

P
A

i=1
~�i⌧

(a)

i
(~�i is the spin oper-

ator of the i-th nucleon). The low momentum transfer
suggests that the protons in pp-fusion are essentially in
relative s-wave angular momentum (p-wave relative state
contributes at the few per-mille level to the cross section
[15]). As a result, S

11(0) and the comparative triton
half-life (fT1/2)t[25], are computed in the following way

(fT1/2)t =
2(fT1/2)0+!0+

h3HekF(+)
k3Hi2 + fA

fV
h3HekGT(+)

k3Hi2
,

(2)

S
11(0) = 4.01. (3)

Here, (fT1/2)0+!0+ = 3071.4 ± 0.8s [26], and
fA/fV = 1.00529 [27] accounts for the small di↵er-
ence in the statistical rate function between vector and
axial-vector transitions. The comparative half-life of
the triton (fT1/2)t = 1129.6 ± 3.0, together with a
theoretical estimate for the minor (about one per-mille)
isospin breaking e↵ect in the F transition, an empirical
value

GTn = hnkGT(�)
kpi =

p
3 · ( 1

gA
)

GTemp

3H
= h

3HkGT(�)
k
3Hei =

p
3 · ( 1.213±0.002

gA
)

This value allows to quantify the many-nucleon weak
correlations in this transition, which, augmented by a
theory for these correlations, can be used to predict
S
11(0) [15, 27, 28].
In order to accomplish this consistently, one needs to

connect the many-body weak correlations consistently
to QCD. Here, we use ⇡/EFT to next-to-leading order
(NLO). We solve the nuclear problem as a scattering
problem. A simplification is achieved by using Hubbard-
Stratonovich transformation, introducing an auxiliary
di-baryon field into the NLO microscopic Lagrangian
[29, 30].

SETTING UP ⇡/EFTTO NEXT-TO-LEADING

ORDER

The nuclear system at low-energies is characterized by
the properties of two body clusters, i.e., the scattering

2

underlying theory, e.g., lattice QCD calculations [13, 14],
or by fitting to low-energy experiments.

Recently, a calculation of S11 for proton energies up to
100 keV was calculated [15], using “chiral” EFT (�EFT )
potentials. A state-of-the-art calculation led to a recom-
mendation of S11(0) = (4.03 ± 0.0015) · 10�23 MeV fm2,
using the consistency of three nucleon forces and two-
body axial currents [16]. The uncertainty, which is al-
most an order of magnitude better than previous recom-
mendation, is based only on the di↵erence between the
two variants of �EFTpotentials.

The renormalizability, which ensures cuto↵ indepen-
dence, the small number of parameters as well as their
obvious relation to measured quantities, e.g., nucleon-
nucleon scattering length and e↵ective ranges, and the
natural pertubative expansion make ⇡/EFT ideal for pre-
dictions of low energy nuclear reactions with reliable un-
certainty estimates. This makes pp-fusion an ideal case
for ⇡/EFT [17], however, an obstacle is found in the cali-
bration of a next-to-leading order two-body low-energy-
constant L1,A, which is the strength an axial probe cou-
ples to a contact of two nucleons [17]. L1,A appears in any
weak reaction with a Gamow-Teller contribution. How-
ever, at the two body level the constraints are not ideal.
In particular, the stringent consistent constraint to date
comes from ⌫̄ � d scattering [17, 18], a fact which lim-
ited the prediction accuracy of ⇡/EFT for solar pp-fusion
[19, 20].

In the current letter, we progress on several fronts of
this pivot nuclear astrophysics theoretical challenge. For
the first time, we calculate a three body weak � de-
cay, namely 3H !

3 He + ⌫̄e + e
�, and use it to fix the

two-body-contact L1,A, needed to predict pp-fusion rate.
We complement the prediction with theoretical uncer-
tainty, as well as experimental systematic uncertainty,
which is substantially larger than previously estimated,
due to contradicting measurements of the axial constant
of the nucleon gA, leading to systematic uncertainty be-
tween PDG recommended value gA = 1.2701(25) [21] and
newer estimates gA = 1.2756(30) [22], gA = 1.2761

�
+14

�17

�

[23] and gA = 1.2766(25)(05)[24].
Calculation of weak nuclear reaction rates includes the

evaluation of matrix elements of the weak nuclear cur-
rent between initial and final nuclear wave function. The
weak current includes a polar vector part V(a)

µ , which in
the standard model is an isospin rotation of the iso-vector
electromagnetic current to iso-spin projection a = 0, ±1,

as well as an axial vector part A
(a)

µ . Additional sim-
plification is achieved by considering the low momen-
tum transfer q compared to the nuclear length scale,
e.g., r.m.s radius R ⇡ 1 fm, in both pp-fusion, where
the momenta of the protons is dictated by solar tem-
perature kBT ⇡ 1.5 keV, i.e., qR ⇡

p
2MkBTR ⇡ 0.8

(M ⇡ 939MeV/c2 is the mass of the nucleon), and 3H
decay, where q is smaller than the Q-value of the decay
(⇡ 20 keV), i.e., qR . 10�4. In these kinematics, the

conservation of vector current hypothesis simplifies the
weak interaction polar-vector current to the Fermi op-

erator V
(a)

0
= F =

P
A

i=1
⌧
(a)

i
, i.e. a sum of the isospin

lowering, raising or projection of each of the A nucle-
ons in the nucleus, and the axial-vector is given by a
Gamow-Teller (GT) operator, which is usually written
in a form that neglects correlations between the nucleons
~A
(a) = ~GT

(a)

= �gA

P
A

i=1
~�i⌧

(a)

i
(~�i is the spin oper-

ator of the i-th nucleon). The low momentum transfer
suggests that the protons in pp-fusion are essentially in
relative s-wave angular momentum (p-wave relative state
contributes at the few per-mille level to the cross section
[15]). As a result, S

11(0) and the comparative triton
half-life (fT1/2)t[25], are computed in the following way

(fT1/2)t =
2(fT1/2)0+!0+

h3HekF(+)
k3Hi2 + fA

fV
h3HekGT(+)

k3Hi2
,

(2)

S
11(0) = 4.01. (3)

Here, (fT1/2)0+!0+ = 3071.4 ± 0.8s [26], and
fA/fV = 1.00529 [27] accounts for the small di↵er-
ence in the statistical rate function between vector and
axial-vector transitions. The comparative half-life of
the triton (fT1/2)t = 1129.6 ± 3.0, together with a
theoretical estimate for the minor (about one per-mille)
isospin breaking e↵ect in the F transition, an empirical
value

GTn = hnkGT(�)
kpi =

p
3 · ( 1

gA
)

GTemp

3H
= h

3HkGT(�)
k
3Hei =

p
3 · ( 1.213±0.002

gA
)

This value allows to quantify the many-nucleon weak
correlations in this transition, which, augmented by a
theory for these correlations, can be used to predict
S
11(0) [15, 27, 28].
In order to accomplish this consistently, one needs to

connect the many-body weak correlations consistently
to QCD. Here, we use ⇡/EFT to next-to-leading order
(NLO). We solve the nuclear problem as a scattering
problem. A simplification is achieved by using Hubbard-
Stratonovich transformation, introducing an auxiliary
di-baryon field into the NLO microscopic Lagrangian
[29, 30].
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The nuclear system at low-energies is characterized by
the properties of two body clusters, i.e., the scattering
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and predict pp fusion
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For both observables: 			𝑇 = 𝑇12× 1 +
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+

Use 3H decay to fix 2-body strength L1A
and predict pp fusion
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𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
theoretical
uncertainty

ü However, we find small NLO contribution ≈ 4%…

ü How do we know if 𝑐 is unnaturally small or 𝛿? Is this unique for GT?

ü How do assess expansion parameter and uncertainty?

ü How do we know if this is valid?
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LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [36] ⇢t 1.765 fm [37]
as -23.714 fm [38] ⇢s 2.73 fm [39]
ap -7.8063 fm [40] ⇢C 2.794 fm [40]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He,
the contributing channels are the spin-triplet - t, spin-
singlet - s (np) and pp [11], where the latter is required
because of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [14], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.

III. ADDING MAGNETIC INTERACTION
INTO ⇡/EFT

M1 observables at vanishing momentum transfer are
related to the electromagnetic nuclear current density
Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
i

2
~rq ⇥ Ĵ (~q)

��
q=0

, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [23]):

L
1-B
magnetic =

e

2M
N

† (0 + 1⌧3)~� · ~BN, (2)

where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-

magnetic-photon operators:
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(3)

Applying the H-S transformation on eq. (3) leads to the
interaction in terms of the dibaryon fields (see [14, 24]):

L
2-B
magnetic =
e

2M

h
1L1(t

†
s+ s

†
t) · ~B � i✏

ijk
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(4)

The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :
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and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:
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interaction in terms of the dibaryon fields (see [14, 24]):
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The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :
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and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:
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LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [36] ⇢t 1.765 fm [37]
as -23.714 fm [38] ⇢s 2.73 fm [39]
ap -7.8063 fm [40] ⇢C 2.794 fm [40]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He,
the contributing channels are the spin-triplet - t, spin-
singlet - s (np) and pp [11], where the latter is required
because of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [14], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.

III. ADDING MAGNETIC INTERACTION
INTO ⇡/EFT

M1 observables at vanishing momentum transfer are
related to the electromagnetic nuclear current density
Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
i

2
~rq ⇥ Ĵ (~q)

��
q=0

, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [23]):

L
1-B
magnetic =

e

2M
N

† (0 + 1⌧3)~� · ~BN, (2)

where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-

magnetic-photon operators:
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Applying the H-S transformation on eq. (3) leads to the
interaction in terms of the dibaryon fields (see [14, 24]):

L
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The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :
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and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:

hµ̂i = hµ̂i
1-B
LO⇥

0
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O(0)
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LO magntic opert.
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3

LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [36] ⇢t 1.765 fm [37]
as -23.714 fm [38] ⇢s 2.73 fm [39]
ap -7.8063 fm [40] ⇢C 2.794 fm [40]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He,
the contributing channels are the spin-triplet - t, spin-
singlet - s (np) and pp [11], where the latter is required
because of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [14], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.

III. ADDING MAGNETIC INTERACTION
INTO ⇡/EFT

M1 observables at vanishing momentum transfer are
related to the electromagnetic nuclear current density
Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
i

2
~rq ⇥ Ĵ (~q)

��
q=0

, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [23]):

L
1-B
magnetic =

e

2M
N

† (0 + 1⌧3)~� · ~BN, (2)

where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-

magnetic-photon operators:
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Applying the H-S transformation on eq. (3) leads to the
interaction in terms of the dibaryon fields (see [14, 24]):

L
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1L1(t

†
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t) · ~B � i✏

ijk
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(4)

The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :
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p
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and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:

hµ̂i = hµ̂i
1-B
LO⇥

0
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O(0)
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LO magntic opert.
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LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [36] ⇢t 1.765 fm [37]
as -23.714 fm [38] ⇢s 2.73 fm [39]
ap -7.8063 fm [40] ⇢C 2.794 fm [40]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He,
the contributing channels are the spin-triplet - t, spin-
singlet - s (np) and pp [11], where the latter is required
because of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [14], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.

III. ADDING MAGNETIC INTERACTION
INTO ⇡/EFT

M1 observables at vanishing momentum transfer are
related to the electromagnetic nuclear current density
Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
i

2
~rq ⇥ Ĵ (~q)

��
q=0

, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [23]):

L
1-B
magnetic =

e

2M
N

† (0 + 1⌧3)~� · ~BN, (2)

where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-

magnetic-photon operators:
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Applying the H-S transformation on eq. (3) leads to the
interaction in terms of the dibaryon fields (see [14, 24]):

L
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(4)

The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :
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and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:
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LO⇥
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LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [36] ⇢t 1.765 fm [37]
as -23.714 fm [38] ⇢s 2.73 fm [39]
ap -7.8063 fm [40] ⇢C 2.794 fm [40]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He,
the contributing channels are the spin-triplet - t, spin-
singlet - s (np) and pp [11], where the latter is required
because of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [14], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.

III. ADDING MAGNETIC INTERACTION
INTO ⇡/EFT

M1 observables at vanishing momentum transfer are
related to the electromagnetic nuclear current density
Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
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2
~rq ⇥ Ĵ (~q)

��
q=0

, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [23]):

L
1-B
magnetic =

e

2M
N

† (0 + 1⌧3)~� · ~BN, (2)

where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-

magnetic-photon operators:

L
2-B
magnetic =e

h
L
0

1

�
N

T
P

A

s
N
�† �

N
T
P

i

t
N
�
Bi

� L
0

2

�
N

T
P

i

t
N
�† ⇣

N
T
P

j

t
N

⌘
Bk + h.c

i
.

(3)

Applying the H-S transformation on eq. (3) leads to the
interaction in terms of the dibaryon fields (see [14, 24]):
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The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :
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and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:
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M1	observables	– ALL	VERY	WELL	MEASURED

NLO	interaction	Lagrangian

3

LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [36] ⇢t 1.765 fm [37]
as -23.714 fm [38] ⇢s 2.73 fm [39]
ap -7.8063 fm [40] ⇢C 2.794 fm [40]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He,
the contributing channels are the spin-triplet - t, spin-
singlet - s (np) and pp [11], where the latter is required
because of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [14], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.
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while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].
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(see, for example, Ref. [23]):
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the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
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Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
i

2
~rq ⇥ Ĵ (~q)
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~rq ⇥ Ĵ (~q)

��
q=0

, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [23]):

L
1-B
magnetic =

e

2M
N

† (0 + 1⌧3)~� · ~BN, (2)

where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-

magnetic-photon operators:

L
2-B
magnetic =e

h
L
0

1

�
N

T
P

A

s
N
�† �

N
T
P

i

t
N
�
Bi

� L
0

2

�
N

T
P

i

t
N
�† ⇣

N
T
P

j

t
N

⌘
Bk + h.c

i
.

(3)

Applying the H-S transformation on eq. (3) leads to the
interaction in terms of the dibaryon fields (see [14, 24]):

L
2-B
magnetic =
e

2M

h
1L1(t

†
s+ s

†
t) · ~B � i✏

ijk
0L2((t

i)†tj) ·Bk

i
.

(4)

The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :

L1(µ) = �
⇢t + ⇢s
p
⇢t⇢s| {z }

LO

+
4

�t
p
⇢t⇢s

l
0

1(µ)| {z }
NLO

(5)

L2(µ) = � 2|{z}
LO

+
2

�t⇢t
l
0

2(µ)| {z }
NLO

. (6)

l
0
1(µ) ⌘ �t

p
⇢t⇢s

l1(µ)
4 where: renormalization scale de-

pendence of L0
1, L

0
2 can be made explicit by writing:

l
0

1(µ) =
M�t

4⇡

L
0
1

1
(µ� �t)

✓
µ�

1

as

◆
, (7)

l
0

2(µ) =
M�t

⇡

L
0
2

0
(µ� �t)

2
, (8)

and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:

hµ̂i = hµ̂i
1-B
LO⇥

0

BBBBBB@
1|{z}

O(0)

+ �hµ̂i
1-B
ERE + �hµ̂i

2-B
ERE| {z }

O(Q/⇤b)
LO magntic opert.
NLO storng inter.

+ �hµ̂i
2-B

| {z }
O(Q/⇤b)

NLO magntic opert.
LO storng inter.

1

CCCCCCA
. (9)

5

FIG. 2: Numerical results for LECs l01(⇤) (left panel) and l02(⇤) (right panel), calibrated from hµ̂3Hi and hµ̂3Hei as a function of the
cuto↵ ⇤. The long (short) dashed lines are the numerical results obtained from A = 3 observables simultaneously for the ER-(Z-)

parameterization. The long (short) dashed lines are the numerical results obtained from A = 3 observables separately for the ER-(Z-)
parameterization.

l01
1/10�2 l02

1/10�2 hµ̂3Hi[NM] |hµ̂3Hei|[NM] hµ̂di[NM] Y 0
np

LO 0 (0) 0 (0) 2.76 (2.78) 1.84 (1.84) 0.88 (0.88) 1.18 (1.18)

N
L
O

4.72 (14.2) -1.6 (4.1) ? ? 0.87 (0.92) 1.253 (1.31)
4.66 (9.0) -2.6 (-2.6) 2.978 (2.76) 2.145 (1.89) ? ?
4.66 (9.0) -2.4 (29) ? 2.144 (1.66) 0.86 (1.17) ?
4.66 (9.0) -0.13 (-31) 2.996 (2.59) ? 0.88 (0.61) ?
4.92 (15.2) -2.6 (-2.6) ? 2.143 (2.23) ? 1.255 (1.32)
4.60 (13.4) -2.6 (-2.6) 2.967 (2.91) ? ? 1.253 (1.30)

Mean 4.73 (13.0) -1.7 (-0.04) 2.98 (2.75) 2.144 (1.93) 0.87 (0.89) 1.253 (1.31)
std 0.2 (2.8) 1.1 (25) 0.015 (0.16) 0.001 (0.28) 0.01 (0.26) 0.001 (0.01)

Exp
data

2.979 [45] 2.128 [45] 0.857 [16] 1.253 [17]

M1 �hµ̂itotal �hµ̂i NLO
strong
inter.

�hµ̂i2-BNLO
magnetic
opert.

hµ̂3Hi 7% (1%) 3% (11%) 5% (10%)
hµ̂3Hei 13% (4%) 3% (25%) 10% (29%)
hµ̂di 1% (1%) 0% (0%) 1% (1%)
Y 0
np 6% (9%) 2% (2%) 4% (12%)

TABLE II:

(a) Numerical results for our prediction for l01
1, l02

1 and A = 2, 3M1 observ-
ables. The nominal value is calculated using Z-parameterization, while the
number in brackets is calculated using the ER-parameterization. Mean de-
notes the mean value of the M1 observable based on its three (independent)
predictions, while ‘std’ denotes the standard divination of these independent
predictions.

(b) The order-by-order contributions of the
M1 matrix elements, based on their mean val-
ues given in Table II (a). The nominal value
is calculated using Z-parameterization, while
the number in brackets is calculated using ER-
parameterization. The three nuclear magnetic
monuments are given in nuclear magnetons
[NM]

Table II (b) presents the three contributions to the
di↵erent M1 observables for both the ER- and Z-
parameterizations.

Table II verify that the ⇡/EFTpresented in this pa-
per is purely perturbative, i.e., it consistently organizes
the expansion in a perturbative manner, and as built
theoretically without including any higher-order terms.
Moreover, an order-by-order renormalization was ob-
tained, as shown numerically, by the cuto↵ invariance
(see Fig 2) with a small expansion parameter of 0.05�0.2.
In chiral e↵ective field theory (�EFT), as well as in

⇡/EFTconfiguration space schemes [25, 46], a cuto↵ varia-
tion is frequently used to obtain an uncertainty estimate.
Here we show that the main advantage of using the cur-
rent formalism of ⇡/EFT is the cuto↵ invariance, which
even for A = 3 calculations is obtained at a natural scale
of no more than a few times the physical breakdown scale
(⇤ ⇠ few m⇡) [47]. This cuto↵ independence not only
removes questions regarding residual cuto↵ dependencies
that might contribute to the total uncertainty [25, 46],
but also allows giving physical meaning to the size of the
NLO contribution.
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4.92 (15.2) -2.6 (-2.6) ? 2.143 (2.23) ? 1.255 (1.32)
4.60 (13.4) -2.6 (-2.6) 2.967 (2.91) ? ? 1.253 (1.30)

Mean 4.73 (13.0) -1.7 (-0.04) 2.98 (2.75) 2.144 (1.93) 0.87 (0.89) 1.253 (1.31)
std 0.2 (2.8) 1.1 (25) 0.015 (0.16) 0.001 (0.28) 0.01 (0.26) 0.001 (0.01)

Exp
data

2.979 [45] 2.128 [45] 0.857 [16] 1.253 [17]

M1 �hµ̂itotal �hµ̂i NLO
strong
inter.

�hµ̂i2-BNLO
magnetic
opert.

hµ̂3Hi 7% (1%) 3% (11%) 5% (10%)
hµ̂3Hei 13% (4%) 3% (25%) 10% (29%)
hµ̂di 1% (1%) 0% (0%) 1% (1%)
Y 0
np 6% (9%) 2% (2%) 4% (12%)

TABLE II:

(a) Numerical results for our prediction for l01
1, l02

1 and A = 2, 3M1 observ-
ables. The nominal value is calculated using Z-parameterization, while the
number in brackets is calculated using the ER-parameterization. Mean de-
notes the mean value of the M1 observable based on its three (independent)
predictions, while ‘std’ denotes the standard divination of these independent
predictions.

(b) The order-by-order contributions of the
M1 matrix elements, based on their mean val-
ues given in Table II (a). The nominal value
is calculated using Z-parameterization, while
the number in brackets is calculated using ER-
parameterization. The three nuclear magnetic
monuments are given in nuclear magnetons
[NM]

Table II (b) presents the three contributions to the
di↵erent M1 observables for both the ER- and Z-
parameterizations.

Table II verify that the ⇡/EFTpresented in this pa-
per is purely perturbative, i.e., it consistently organizes
the expansion in a perturbative manner, and as built
theoretically without including any higher-order terms.
Moreover, an order-by-order renormalization was ob-
tained, as shown numerically, by the cuto↵ invariance
(see Fig 2) with a small expansion parameter of 0.05�0.2.
In chiral e↵ective field theory (�EFT), as well as in

⇡/EFTconfiguration space schemes [25, 46], a cuto↵ varia-
tion is frequently used to obtain an uncertainty estimate.
Here we show that the main advantage of using the cur-
rent formalism of ⇡/EFT is the cuto↵ invariance, which
even for A = 3 calculations is obtained at a natural scale
of no more than a few times the physical breakdown scale
(⇤ ⇠ few m⇡) [47]. This cuto↵ independence not only
removes questions regarding residual cuto↵ dependencies
that might contribute to the total uncertainty [25, 46],
but also allows giving physical meaning to the size of the
NLO contribution.

3

LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [36] ⇢t 1.765 fm [37]
as -23.714 fm [38] ⇢s 2.73 fm [39]
ap -7.8063 fm [40] ⇢C 2.794 fm [40]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He,
the contributing channels are the spin-triplet - t, spin-
singlet - s (np) and pp [11], where the latter is required
because of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [14], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.

III. ADDING MAGNETIC INTERACTION
INTO ⇡/EFT

M1 observables at vanishing momentum transfer are
related to the electromagnetic nuclear current density
Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
i

2
~rq ⇥ Ĵ (~q)

��
q=0

, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [23]):

L
1-B
magnetic =

e

2M
N

† (0 + 1⌧3)~� · ~BN, (2)

where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-

magnetic-photon operators:

L
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magnetic =e
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(3)

Applying the H-S transformation on eq. (3) leads to the
interaction in terms of the dibaryon fields (see [14, 24]):

L
2-B
magnetic =
e

2M

h
1L1(t

†
s+ s

†
t) · ~B � i✏

ijk
0L2((t

i)†tj) ·Bk

i
.

(4)

The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :

L1(µ) = �
⇢t + ⇢s
p
⇢t⇢s| {z }

LO

+
4

�t
p
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1(µ)| {z }
NLO
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L2(µ) = � 2|{z}
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. (6)
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l1(µ)
4 where: renormalization scale de-

pendence of L0
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0
2 can be made explicit by writing:

l
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and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:

hµ̂i = hµ̂i
1-B
LO⇥

0

BBBBBB@
1|{z}

O(0)

+ �hµ̂i
1-B
ERE + �hµ̂i

2-B
ERE| {z }

O(Q/⇤b)
LO magntic opert.
NLO storng inter.

+ �hµ̂i
2-B

| {z }
O(Q/⇤b)

NLO magntic opert.
LO storng inter.

1

CCCCCCA
. (9)

ü What do we see here?

ü The NLO contribution is about ϵ ≈ 5 − 10% - We “expected” ϵ ≈ ,
Z

ü ER parameterization seems more precise; However, fluctuations within 
contributions are significantly bigger than total one.

ü We focus on Z paramterization only! 

(ER –PARAMETERIZTION)“Z”-PARAMETERIZTION
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FIG. 2: Numerical results for LECs l01(⇤) (left panel) and l02(⇤) (right panel), calibrated from hµ̂3Hi and hµ̂3Hei as a function of the
cuto↵ ⇤. The long (short) dashed lines are the numerical results obtained from A = 3 observables simultaneously for the ER-(Z-)

parameterization. The long (short) dashed lines are the numerical results obtained from A = 3 observables separately for the ER-(Z-)
parameterization.

l01
1/10�2 l02

1/10�2 hµ̂3Hi[NM] |hµ̂3Hei|[NM] hµ̂di[NM] Y 0
np

LO 0 (0) 0 (0) 2.76 (2.78) 1.84 (1.84) 0.88 (0.88) 1.18 (1.18)

N
L
O

4.72 (14.2) -1.6 (4.1) ? ? 0.87 (0.92) 1.253 (1.31)
4.66 (9.0) -2.6 (-2.6) 2.978 (2.76) 2.145 (1.89) ? ?
4.66 (9.0) -2.4 (29) ? 2.144 (1.66) 0.86 (1.17) ?
4.66 (9.0) -0.13 (-31) 2.996 (2.59) ? 0.88 (0.61) ?
4.92 (15.2) -2.6 (-2.6) ? 2.143 (2.23) ? 1.255 (1.32)
4.60 (13.4) -2.6 (-2.6) 2.967 (2.91) ? ? 1.253 (1.30)

Mean 4.73 (13.0) -1.7 (-0.04) 2.98 (2.75) 2.144 (1.93) 0.87 (0.89) 1.253 (1.31)
std 0.2 (2.8) 1.1 (25) 0.015 (0.16) 0.001 (0.28) 0.01 (0.26) 0.001 (0.01)

Exp
data

2.979 [45] 2.128 [45] 0.857 [16] 1.253 [17]

M1 �hµ̂itotal �hµ̂i NLO
strong
inter.

�hµ̂i2-BNLO
magnetic
opert.

hµ̂3Hi 7% (1%) 3% (11%) 5% (10%)
hµ̂3Hei 13% (4%) 3% (25%) 10% (29%)
hµ̂di 1% (1%) 0% (0%) 1% (1%)
Y 0
np 6% (9%) 2% (2%) 4% (12%)

TABLE II:

(a) Numerical results for our prediction for l01
1, l02

1 and A = 2, 3M1 observ-
ables. The nominal value is calculated using Z-parameterization, while the
number in brackets is calculated using the ER-parameterization. Mean de-
notes the mean value of the M1 observable based on its three (independent)
predictions, while ‘std’ denotes the standard divination of these independent
predictions.

(b) The order-by-order contributions of the
M1 matrix elements, based on their mean val-
ues given in Table II (a). The nominal value
is calculated using Z-parameterization, while
the number in brackets is calculated using ER-
parameterization. The three nuclear magnetic
monuments are given in nuclear magnetons
[NM]

Table II (b) presents the three contributions to the
di↵erent M1 observables for both the ER- and Z-
parameterizations.

Table II verify that the ⇡/EFTpresented in this pa-
per is purely perturbative, i.e., it consistently organizes
the expansion in a perturbative manner, and as built
theoretically without including any higher-order terms.
Moreover, an order-by-order renormalization was ob-
tained, as shown numerically, by the cuto↵ invariance
(see Fig 2) with a small expansion parameter of 0.05�0.2.
In chiral e↵ective field theory (�EFT), as well as in

⇡/EFTconfiguration space schemes [25, 46], a cuto↵ varia-
tion is frequently used to obtain an uncertainty estimate.
Here we show that the main advantage of using the cur-
rent formalism of ⇡/EFT is the cuto↵ invariance, which
even for A = 3 calculations is obtained at a natural scale
of no more than a few times the physical breakdown scale
(⇤ ⇠ few m⇡) [47]. This cuto↵ independence not only
removes questions regarding residual cuto↵ dependencies
that might contribute to the total uncertainty [25, 46],
but also allows giving physical meaning to the size of the
NLO contribution.

3

LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [36] ⇢t 1.765 fm [37]
as -23.714 fm [38] ⇢s 2.73 fm [39]
ap -7.8063 fm [40] ⇢C 2.794 fm [40]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He,
the contributing channels are the spin-triplet - t, spin-
singlet - s (np) and pp [11], where the latter is required
because of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [14], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.

III. ADDING MAGNETIC INTERACTION
INTO ⇡/EFT

M1 observables at vanishing momentum transfer are
related to the electromagnetic nuclear current density
Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
i

2
~rq ⇥ Ĵ (~q)

��
q=0

, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [23]):

L
1-B
magnetic =

e

2M
N

† (0 + 1⌧3)~� · ~BN, (2)

where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-

magnetic-photon operators:
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(3)

Applying the H-S transformation on eq. (3) leads to the
interaction in terms of the dibaryon fields (see [14, 24]):

L
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magnetic =
e

2M

h
1L1(t
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t) · ~B � i✏

ijk
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(4)

The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :

L1(µ) = �
⇢t + ⇢s
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4 where: renormalization scale de-
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2 can be made explicit by writing:
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and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:

hµ̂i = hµ̂i
1-B
LO⇥

0

BBBBBB@
1|{z}

O(0)

+ �hµ̂i
1-B
ERE + �hµ̂i

2-B
ERE| {z }

O(Q/⇤b)
LO magntic opert.
NLO storng inter.

+ �hµ̂i
2-B

| {z }
O(Q/⇤b)

NLO magntic opert.
LO storng inter.

1

CCCCCCA
. (9)

ü What do we see here?

ü The deuteron magnetic moment receives unnaturally small contribution
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A. The A < 4 M1 matrix elements

1. Two-nucleon electromagnetic matrix elements

The matrix element of µ̂ (eq. (1)) between two-nucleon
states is represented diagrammatically in Fig. 1. This
matrix element is related to the calculation of �np (hµ̂di)
if the initial state is in a relative 1S0 (3S1) state, and the
final state is a 3

S1 state.

FIG. 1: Diagrammatic representation of the calculation of µ̂
between two-body states, up to NLO. µ̂ insertion is represented
by the photon vertex. The double lines are the NLO propagator
of the two dibaryon fields. Dt (solid) and Ds (dashed). The red
(blue) line represents the neutron (proton) propagator. A
spin-singlet (triplet) dibaryon-nucleon-nucleon vertex is
proportional to ys, blue diamond (yt, red diamond).

From Fig. 1, one concludes that up to NLO, hµ̂di is
given by:

hµ̂di = 0

�
2ZNLO

d
+ Z

LO
d

[�t⇢tL2(µ)]
 

= 20

2

641 + 0|{z}
NLO storng inter.

+ l
0

2(µ)| {z }
NLO magnetic opert.

3

75 , (10)

The cross-section of n + p ! d + � is related to the
matrix element Y by:

�np = 2↵⇡
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2
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2
/4
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2
s

M4q�t
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2
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2
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M4q
(21)

2(Y 0

np
)2,

(11)
where Ynp is the sum over all the diagrams of Fig. 1 and
q = 0.0069MeV/c is the momentum transfer for thermal
neutrons [10, 26], [43].

The normalized matrix element, Y 0
np
, up to NLO is also

obtained by Fig. 1 to yield:

Y
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=
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d

� 1�
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�tas � 1

�t (⇢t + ⇢s)

4| {z }
NLO storng inter. corrections

+
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�tas � 1
l
0

1(µ)
| {z }
NLO magnetic

operator
corrections

#
,

(12)

The above expressions up to higher-order corrections
can be found in the literature (see, e.g., [24, 44]).

2. Three-nucleon electromagnetic matrix elements

In Ref. [14], we presented a general perturbative dia-
grammatic approach for calculating one- and two-body
matrix elements between initial and final three-nucleon
bound-states up to NLO. In this work, we use this
method to calculate the M1 observables in the A = 3
system (see Appendix A). The A = 3 M1 observables,

hµ̂i = hµ̂i
1-B

0

@1 + �hµ̂i
1-B + �hµ̂i

2-B + �hµ̂i
2-B
LEC| {z }

NLO

1

A, can be

calculated only numerically (with the experimental input
parameters shown in Table I) using Ref.[14].

IV. RESULTS AND ANALYSIS

The A < 4 M1 observables depend upon the physical
(RG invariant) values of the LECs, i.e., l01,2

1
⌘ l

0
1,2(µ =

⇤ ! 1). In past works, the experimental values of
the A = 2 observables (�np and hµ̂di) were used to fix
these LECs [24, 42]. Here, we calculate consistently the
A < 4 M1 observables which depend on the same LECs,
so we can extract these LECs from two observables and
then use them to predict the remaining two observables.
Therefore, we have six independent ways for calibrating
the LECs. These calibrations are used to check whether
this formalism can be consistently used to describe si-
multaneously A = 2 and A = 3 M1 observables using
⇡/EFT . Table II (a) summarizes our predictions for l01,2

1

and M1 observables up to NLO in both Z- and ERE-
parameterization. For each row, the 0

?
0 denotes the M1

observables used for l01,2
1, calibration, by fixing our cal-

culation to the experimental data. For example, the first
row of Table II (a) shows the LECs fixed from A = 3
observables and our prediction of A = 2 magnetic ob-
servables, while the second row of Table II (a) shows the
LECs fixed from A = 2 observables and the prediction
of A = 3 magnetic observables. Note that for each M1

observable we have three predictions. The numerical re-
sults of l01(⇤) and l

0
2(⇤) are shown in Fig. 2, and show

that they are RG invariant, even if they are fixed in the
A = 3 systems.
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FIG. 2: Numerical results for LECs l01(⇤) (left panel) and l02(⇤) (right panel), calibrated from hµ̂3Hi and hµ̂3Hei as a function of the
cuto↵ ⇤. The long (short) dashed lines are the numerical results obtained from A = 3 observables simultaneously for the ER-(Z-)

parameterization. The long (short) dashed lines are the numerical results obtained from A = 3 observables separately for the ER-(Z-)
parameterization.

l01
1/10�2 l02

1/10�2 hµ̂3Hi[NM] |hµ̂3Hei|[NM] hµ̂di[NM] Y 0
np

LO 0 (0) 0 (0) 2.76 (2.78) 1.84 (1.84) 0.88 (0.88) 1.18 (1.18)

N
L
O

4.72 (14.2) -1.6 (4.1) ? ? 0.87 (0.92) 1.253 (1.31)
4.66 (9.0) -2.6 (-2.6) 2.978 (2.76) 2.145 (1.89) ? ?
4.66 (9.0) -2.4 (29) ? 2.144 (1.66) 0.86 (1.17) ?
4.66 (9.0) -0.13 (-31) 2.996 (2.59) ? 0.88 (0.61) ?
4.92 (15.2) -2.6 (-2.6) ? 2.143 (2.23) ? 1.255 (1.32)
4.60 (13.4) -2.6 (-2.6) 2.967 (2.91) ? ? 1.253 (1.30)

Mean 4.73 (13.0) -1.7 (-0.04) 2.98 (2.75) 2.144 (1.93) 0.87 (0.89) 1.253 (1.31)
std 0.2 (2.8) 1.1 (25) 0.015 (0.16) 0.001 (0.28) 0.01 (0.26) 0.001 (0.01)

Exp
data

2.979 [45] 2.128 [45] 0.857 [16] 1.253 [17]

M1 �hµ̂itotal �hµ̂i NLO
strong
inter.

�hµ̂i2-BNLO
magnetic
opert.

hµ̂3Hi 7% (1%) 3% (11%) 5% (10%)
hµ̂3Hei 13% (4%) 3% (25%) 10% (29%)
hµ̂di 1% (1%) 0% (0%) 1% (1%)
Y 0
np 6% (9%) 2% (2%) 4% (12%)

TABLE II:

(a) Numerical results for our prediction for l01
1, l02

1 and A = 2, 3M1 observ-
ables. The nominal value is calculated using Z-parameterization, while the
number in brackets is calculated using the ER-parameterization. Mean de-
notes the mean value of the M1 observable based on its three (independent)
predictions, while ‘std’ denotes the standard divination of these independent
predictions.

(b) The order-by-order contributions of the
M1 matrix elements, based on their mean val-
ues given in Table II (a). The nominal value
is calculated using Z-parameterization, while
the number in brackets is calculated using ER-
parameterization. The three nuclear magnetic
monuments are given in nuclear magnetons
[NM]

Table II (b) presents the three contributions to the
di↵erent M1 observables for both the ER- and Z-
parameterizations.

Table II verify that the ⇡/EFTpresented in this pa-
per is purely perturbative, i.e., it consistently organizes
the expansion in a perturbative manner, and as built
theoretically without including any higher-order terms.
Moreover, an order-by-order renormalization was ob-
tained, as shown numerically, by the cuto↵ invariance
(see Fig 2) with a small expansion parameter of 0.05�0.2.
In chiral e↵ective field theory (�EFT), as well as in

⇡/EFTconfiguration space schemes [25, 46], a cuto↵ varia-
tion is frequently used to obtain an uncertainty estimate.
Here we show that the main advantage of using the cur-
rent formalism of ⇡/EFT is the cuto↵ invariance, which
even for A = 3 calculations is obtained at a natural scale
of no more than a few times the physical breakdown scale
(⇤ ⇠ few m⇡) [47]. This cuto↵ independence not only
removes questions regarding residual cuto↵ dependencies
that might contribute to the total uncertainty [25, 46],
but also allows giving physical meaning to the size of the
NLO contribution.

ü What do we see here?

ü The deuteron magnetic moment receives unnaturally small contribution

ü The statistical analysis shows that          is consistent with 0.      
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FIG. 2: Numerical results for LECs l01(⇤) (left panel) and l02(⇤) (right panel), calibrated from hµ̂3Hi and hµ̂3Hei as a function of the
cuto↵ ⇤. The long (short) dashed lines are the numerical results obtained from A = 3 observables simultaneously for the ER-(Z-)

parameterization. The long (short) dashed lines are the numerical results obtained from A = 3 observables separately for the ER-(Z-)
parameterization.
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N
L
O
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inter.
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notes the mean value of the M1 observable based on its three (independent)
predictions, while ‘std’ denotes the standard divination of these independent
predictions.
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ues given in Table II (a). The nominal value
is calculated using Z-parameterization, while
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di↵erent M1 observables for both the ER- and Z-
parameterizations.
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per is purely perturbative, i.e., it consistently organizes
the expansion in a perturbative manner, and as built
theoretically without including any higher-order terms.
Moreover, an order-by-order renormalization was ob-
tained, as shown numerically, by the cuto↵ invariance
(see Fig 2) with a small expansion parameter of 0.05�0.2.
In chiral e↵ective field theory (�EFT), as well as in

⇡/EFTconfiguration space schemes [25, 46], a cuto↵ varia-
tion is frequently used to obtain an uncertainty estimate.
Here we show that the main advantage of using the cur-
rent formalism of ⇡/EFT is the cuto↵ invariance, which
even for A = 3 calculations is obtained at a natural scale
of no more than a few times the physical breakdown scale
(⇤ ⇠ few m⇡) [47]. This cuto↵ independence not only
removes questions regarding residual cuto↵ dependencies
that might contribute to the total uncertainty [25, 46],
but also allows giving physical meaning to the size of the
NLO contribution.
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A. Z-parameterization is better than the
ER-parameterization at NLO

The comparison between the results of the Z- and ER-
parameterizations reveals some interesting features. The
ratio between total NLO and LO is of the same order
of magnitude, slightly smaller in the Z-parameterization.
Näıvely, this can be interpreted as an indication of a
better convergence pattern of the ER-parameterization.
However, a closer look shows the contrary. First, in the
ER-parameterization, one observes a large cancellation
between the di↵erent contributions to the NLO, i.e., be-
tween the range corrections and the pure two-body con-
tact contributions. Each of the NLO contributions is
usually more than 10% of the LO, while the final NLO
contribution is an order of magnitude smaller. The Z-
parameterization shows a natural pattern, where all the
contributions are largely of the same order of magnitude.
Second, and as a consequence of the former point, the
resulting statistical standard deviations between the pre-
dictions using the di↵erent LECs calibrations (see Ta-
ble II (a)) for the four magnetic observables are an or-
der of magnitude bigger in the ER-parameterization than
those of the Z-parameterization. Third, the statistical
fluctuations in the sizes of the LECs, as can be seen in
Table II (a), are much bigger in the ER-parameterization.

The large variations and fluctuations of the ER-
parameterization raise questions about its relevance
at NLO for predictions of electromagnetic observ-
ables. The advantage of Z-parameterization over ER-
parameterization at NLO, as explicitly demonstrated
here in the magnetic properties of the A < 4 systems, is
consistent with the initial motivation for introducing Z-
parameterization [30, 32, 35]. in the next sub-sections, we
examine the ⇡/EFTNLO’s contributions and estimate its
truncation error only for the Z-parameterization, which
shows a more natural convergence pattern, and therefore
has better predictive power.

B. Isoscalar two-body coupling is consistent with
zero

XXX: Check!
For the case of the Z-parametrization, we find that

while l
0
1
1 has minor dependence on the M1 observables

used for its calibration, i.e., �l
0
1
1
/l

0
1 ⇡ 3%, the stan-

dard deviation of l02
1 is of the same order of magnitude

as l
0
2
1, i.e., �l

0
2
1
/l

0
2
1

⇡ 70%. For the case of ER-
parametrization we find, that the di↵erences between l

0
1
1

and l
0
2
1 are more significant; while �l

0
1
1

ERE
/l

0
1
1

ERE
⇡

21%, �l
0
2
1

ERE
is two orders of magnitude larger than

l
0
2
1

ERE
.

Moreover, the NLO contribution to the Deuteron mag-
netic moment is very small, in fact, it is much smaller
than the NLO contributions of the other observables.
The two-body contribution to µ̂d, as seen in eq. (10),
depends only on l

0
2
1 = (�1.7± 1.1) · 10�2. These two

observables show that l
0
2
1 is consistent with zero. One

interpretation, which we suggest, is l
0
2
1 might be re-

garded as a higher order than NLO, in contrast to the
näıve dimensional analysis of ⇡/EFT , where l

0
1
1 and l

0
2
1

are counted as the same order as discussed earlier in
Ref.[27, 44].
To check the consistency of our conjecture, we study

the ramifications of vanishing l
01

2 . Similarly to Ta-
ble II (a), for each row in Table III, the 0

?
0 denotes the

M1 observable used for l01
1 calibration.

l01
1/10�2 hµ̂3Hi[NM] hµ̂3Hei[NM] Y 0

np

4.36 ? -2.10 1.250
4.97 3.00 ? 1.256
4.66 2.99 -2.11 ?

Mean 4.7 2.99 -2.11 1.253
std 0.6 0.01 0.01 0.006

%NLO/LO 8% 13% 6%
Exp. data 2.979 -2.128 1.253

TABLE III: Numerical results for the calibrated values of l01
1

and the resulting predictions of M1 observables up to NLO for the
Z-parameterization for the case that l02

1 = 0.

Table III shows that setting l
0
2
1 to zero does not re-

duce the quality of l01
1 and M1 predictions, in terms of

the size of the NLO contribution compared to the LO one,
and the statistical accuracy of the predictions given dif-
ferent experimental constraints. This implies that there
is no inconsistency that the iso-scalar l02

1 contribution to
the M1 matrix elements is suppressed compared to NLO
contributions. This is a main result of this paper, and it
will be discussed further in sub-section IVC. One is also
tempted to compare the predictions to the experimental
values. However, for a complete comparison, one needs to
estimate the theoretical uncertainty, which is the subject
of the next sub-section.

C. Estimating theoretical uncertainty

The aforementioned fact that EFT is a systematic ex-
pansion in some small parameter, �, is particularly help-
ful for estimating theoretical uncertainties in the calcula-
tion. A common approach is to study the residual cuto↵
dependence and to use it as a measure for the uncertainty
(see, e.g., [25, 46] in the context of ⇡/EFT ). The order-by-
order renormalization group invariance achieved at a few
times the physical breakdown scale in this work removes
this source of uncertainty.
An additional approach to estimating the theoretical

uncertainty is studying the truncation error in the sys-
tematic EFT expansion [48]. In order to do so, let us
write the ⇡/EFTexpansion for any M1 observable as,

hM1i = hM1iLO ·
�
1 + c

NLO
M1

· � +O(�2)
�
. (13)

EFT suggests that cNLO
M1

is of natural size, and thus the
truncation error is dictated by �. In ⇡/EFT , the näıve
expansion parameter usually taken as � ⇡

�t

m⇡
⇡

1
3 . Us-

ing this expansion parameter, �, is usually the starting
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FIG. 2: Numerical results for LECs l01(⇤) (left panel) and l02(⇤) (right panel), calibrated from hµ̂3Hi and hµ̂3Hei as a function of the
cuto↵ ⇤. The long (short) dashed lines are the numerical results obtained from A = 3 observables simultaneously for the ER-(Z-)

parameterization. The long (short) dashed lines are the numerical results obtained from A = 3 observables separately for the ER-(Z-)
parameterization.
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N
L
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1, l02
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(b) The order-by-order contributions of the
M1 matrix elements, based on their mean val-
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parameterization. The three nuclear magnetic
monuments are given in nuclear magnetons
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parameterizations.
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tained, as shown numerically, by the cuto↵ invariance
(see Fig 2) with a small expansion parameter of 0.05�0.2.
In chiral e↵ective field theory (�EFT), as well as in

⇡/EFTconfiguration space schemes [25, 46], a cuto↵ varia-
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rent formalism of ⇡/EFT is the cuto↵ invariance, which
even for A = 3 calculations is obtained at a natural scale
of no more than a few times the physical breakdown scale
(⇤ ⇠ few m⇡) [47]. This cuto↵ independence not only
removes questions regarding residual cuto↵ dependencies
that might contribute to the total uncertainty [25, 46],
but also allows giving physical meaning to the size of the
NLO contribution.

ü What do we see here?

ü The deuteron magnetic moment receives unnaturally small contribution

ü The statistical analysis shows that          is consistent with 0.  

ü Surprising! (different physics than pion-less expansion?)    
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FIG. 2: Numerical results for LECs l01(⇤) (left panel) and l02(⇤) (right panel), calibrated from hµ̂3Hi and hµ̂3Hei as a function of the
cuto↵ ⇤. The long (short) dashed lines are the numerical results obtained from A = 3 observables simultaneously for the ER-(Z-)

parameterization. The long (short) dashed lines are the numerical results obtained from A = 3 observables separately for the ER-(Z-)
parameterization.

l01
1/10�2 l02

1/10�2 hµ̂3Hi[NM] |hµ̂3Hei|[NM] hµ̂di[NM] Y 0
np
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N
L
O

4.72 (14.2) -1.6 (4.1) ? ? 0.87 (0.92) 1.253 (1.31)
4.66 (9.0) -2.6 (-2.6) 2.978 (2.76) 2.145 (1.89) ? ?
4.66 (9.0) -2.4 (29) ? 2.144 (1.66) 0.86 (1.17) ?
4.66 (9.0) -0.13 (-31) 2.996 (2.59) ? 0.88 (0.61) ?
4.92 (15.2) -2.6 (-2.6) ? 2.143 (2.23) ? 1.255 (1.32)
4.60 (13.4) -2.6 (-2.6) 2.967 (2.91) ? ? 1.253 (1.30)

Mean 4.73 (13.0) -1.7 (-0.04) 2.98 (2.75) 2.144 (1.93) 0.87 (0.89) 1.253 (1.31)
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Exp
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M1 �hµ̂itotal �hµ̂i NLO
strong
inter.

�hµ̂i2-BNLO
magnetic
opert.

hµ̂3Hi 7% (1%) 3% (11%) 5% (10%)
hµ̂3Hei 13% (4%) 3% (25%) 10% (29%)
hµ̂di 1% (1%) 0% (0%) 1% (1%)
Y 0
np 6% (9%) 2% (2%) 4% (12%)

TABLE II:

(a) Numerical results for our prediction for l01
1, l02

1 and A = 2, 3M1 observ-
ables. The nominal value is calculated using Z-parameterization, while the
number in brackets is calculated using the ER-parameterization. Mean de-
notes the mean value of the M1 observable based on its three (independent)
predictions, while ‘std’ denotes the standard divination of these independent
predictions.

(b) The order-by-order contributions of the
M1 matrix elements, based on their mean val-
ues given in Table II (a). The nominal value
is calculated using Z-parameterization, while
the number in brackets is calculated using ER-
parameterization. The three nuclear magnetic
monuments are given in nuclear magnetons
[NM]

Table II (b) presents the three contributions to the
di↵erent M1 observables for both the ER- and Z-
parameterizations.

Table II verify that the ⇡/EFTpresented in this pa-
per is purely perturbative, i.e., it consistently organizes
the expansion in a perturbative manner, and as built
theoretically without including any higher-order terms.
Moreover, an order-by-order renormalization was ob-
tained, as shown numerically, by the cuto↵ invariance
(see Fig 2) with a small expansion parameter of 0.05�0.2.
In chiral e↵ective field theory (�EFT), as well as in

⇡/EFTconfiguration space schemes [25, 46], a cuto↵ varia-
tion is frequently used to obtain an uncertainty estimate.
Here we show that the main advantage of using the cur-
rent formalism of ⇡/EFT is the cuto↵ invariance, which
even for A = 3 calculations is obtained at a natural scale
of no more than a few times the physical breakdown scale
(⇤ ⇠ few m⇡) [47]. This cuto↵ independence not only
removes questions regarding residual cuto↵ dependencies
that might contribute to the total uncertainty [25, 46],
but also allows giving physical meaning to the size of the
NLO contribution.
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A. Z-parameterization is better than the
ER-parameterization at NLO

The comparison between the results of the Z- and ER-
parameterizations reveals some interesting features. The
ratio between total NLO and LO is of the same order
of magnitude, slightly smaller in the Z-parameterization.
Näıvely, this can be interpreted as an indication of a
better convergence pattern of the ER-parameterization.
However, a closer look shows the contrary. First, in the
ER-parameterization, one observes a large cancellation
between the di↵erent contributions to the NLO, i.e., be-
tween the range corrections and the pure two-body con-
tact contributions. Each of the NLO contributions is
usually more than 10% of the LO, while the final NLO
contribution is an order of magnitude smaller. The Z-
parameterization shows a natural pattern, where all the
contributions are largely of the same order of magnitude.
Second, and as a consequence of the former point, the
resulting statistical standard deviations between the pre-
dictions using the di↵erent LECs calibrations (see Ta-
ble II (a)) for the four magnetic observables are an or-
der of magnitude bigger in the ER-parameterization than
those of the Z-parameterization. Third, the statistical
fluctuations in the sizes of the LECs, as can be seen in
Table II (a), are much bigger in the ER-parameterization.

The large variations and fluctuations of the ER-
parameterization raise questions about its relevance
at NLO for predictions of electromagnetic observ-
ables. The advantage of Z-parameterization over ER-
parameterization at NLO, as explicitly demonstrated
here in the magnetic properties of the A < 4 systems, is
consistent with the initial motivation for introducing Z-
parameterization [30, 32, 35]. in the next sub-sections, we
examine the ⇡/EFTNLO’s contributions and estimate its
truncation error only for the Z-parameterization, which
shows a more natural convergence pattern, and therefore
has better predictive power.

B. Isoscalar two-body coupling is consistent with
zero

XXX: Check!
For the case of the Z-parametrization, we find that

while l
0
1
1 has minor dependence on the M1 observables

used for its calibration, i.e., �l
0
1
1
/l

0
1 ⇡ 3%, the stan-

dard deviation of l02
1 is of the same order of magnitude

as l
0
2
1, i.e., �l

0
2
1
/l

0
2
1

⇡ 70%. For the case of ER-
parametrization we find, that the di↵erences between l

0
1
1

and l
0
2
1 are more significant; while �l

0
1
1

ERE
/l

0
1
1

ERE
⇡

21%, �l
0
2
1

ERE
is two orders of magnitude larger than

l
0
2
1

ERE
.

Moreover, the NLO contribution to the Deuteron mag-
netic moment is very small, in fact, it is much smaller
than the NLO contributions of the other observables.
The two-body contribution to µ̂d, as seen in eq. (10),
depends only on l

0
2
1 = (�1.7± 1.1) · 10�2. These two

observables show that l
0
2
1 is consistent with zero. One

interpretation, which we suggest, is l
0
2
1 might be re-

garded as a higher order than NLO, in contrast to the
näıve dimensional analysis of ⇡/EFT , where l

0
1
1 and l

0
2
1

are counted as the same order as discussed earlier in
Ref.[27, 44].
To check the consistency of our conjecture, we study

the ramifications of vanishing l
01

2 . Similarly to Ta-
ble II (a), for each row in Table III, the 0

?
0 denotes the

M1 observable used for l01
1 calibration.

l01
1/10�2 hµ̂3Hi[NM] hµ̂3Hei[NM] Y 0

np

4.36 ? -2.10 1.250
4.97 3.00 ? 1.256
4.66 2.99 -2.11 ?

Mean 4.7 2.99 -2.11 1.253
std 0.6 0.01 0.01 0.006

%NLO/LO 8% 13% 6%
Exp. data 2.979 -2.128 1.253

TABLE III: Numerical results for the calibrated values of l01
1

and the resulting predictions of M1 observables up to NLO for the
Z-parameterization for the case that l02

1 = 0.

Table III shows that setting l
0
2
1 to zero does not re-

duce the quality of l01
1 and M1 predictions, in terms of

the size of the NLO contribution compared to the LO one,
and the statistical accuracy of the predictions given dif-
ferent experimental constraints. This implies that there
is no inconsistency that the iso-scalar l02

1 contribution to
the M1 matrix elements is suppressed compared to NLO
contributions. This is a main result of this paper, and it
will be discussed further in sub-section IVC. One is also
tempted to compare the predictions to the experimental
values. However, for a complete comparison, one needs to
estimate the theoretical uncertainty, which is the subject
of the next sub-section.

C. Estimating theoretical uncertainty

The aforementioned fact that EFT is a systematic ex-
pansion in some small parameter, �, is particularly help-
ful for estimating theoretical uncertainties in the calcula-
tion. A common approach is to study the residual cuto↵
dependence and to use it as a measure for the uncertainty
(see, e.g., [25, 46] in the context of ⇡/EFT ). The order-by-
order renormalization group invariance achieved at a few
times the physical breakdown scale in this work removes
this source of uncertainty.
An additional approach to estimating the theoretical

uncertainty is studying the truncation error in the sys-
tematic EFT expansion [48]. In order to do so, let us
write the ⇡/EFTexpansion for any M1 observable as,

hM1i = hM1iLO ·
�
1 + c

NLO
M1

· � +O(�2)
�
. (13)

EFT suggests that cNLO
M1

is of natural size, and thus the
truncation error is dictated by �. In ⇡/EFT , the näıve
expansion parameter usually taken as � ⇡

�t

m⇡
⇡

1
3 . Us-

ing this expansion parameter, �, is usually the starting
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LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [36] ⇢t 1.765 fm [37]
as -23.714 fm [38] ⇢s 2.73 fm [39]
ap -7.8063 fm [40] ⇢C 2.794 fm [40]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He,
the contributing channels are the spin-triplet - t, spin-
singlet - s (np) and pp [11], where the latter is required
because of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [14], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.

III. ADDING MAGNETIC INTERACTION
INTO ⇡/EFT

M1 observables at vanishing momentum transfer are
related to the electromagnetic nuclear current density
Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
i

2
~rq ⇥ Ĵ (~q)

��
q=0

, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [24, 27, 41].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [22, 24, 27].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [23]):

L
1-B
magnetic =

e

2M
N

† (0 + 1⌧3)~� · ~BN, (2)

where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-

magnetic-photon operators:

L
2-B
magnetic =e

h
L
0

1

�
N

T
P

A

s
N
�† �

N
T
P

i

t
N
�
Bi

� L
0

2

�
N

T
P

i

t
N
�† ⇣

N
T
P

j

t
N

⌘
Bk + h.c

i
.

(3)

Applying the H-S transformation on eq. (3) leads to the
interaction in terms of the dibaryon fields (see [14, 24]):

L
2-B
magnetic =
e

2M

h
1L1(t

†
s+ s

†
t) · ~B � i✏

ijk
0L2((t

i)†tj) ·Bk

i
.

(4)

The LECs cuto↵ dependent of magnetic two-body oper-
ators are related through the relations [24, 42] :

L1(µ) = �
⇢t + ⇢s
p
⇢t⇢s| {z }

LO

+
4

�t
p
⇢t⇢s

l
0

1(µ)| {z }
NLO

(5)

L2(µ) = � 2|{z}
LO

+
2

�t⇢t
l
0

2(µ)| {z }
NLO

. (6)

l
0
1(µ) ⌘ �t

p
⇢t⇢s

l1(µ)
4 where: renormalization scale de-

pendence of L0
1, L

0
2 can be made explicit by writing:

l
0

1(µ) =
M�t

4⇡

L
0
1

1
(µ� �t)

✓
µ�

1

as

◆
, (7)

l
0

2(µ) =
M�t

⇡

L
0
2

0
(µ� �t)

2
, (8)

and L
0
1, L

0
2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in eqs. (2)
and (4). Feynman rules are extracted trivially using this
fact.

Given the above, up to NLO, to keep consistency, the
A < 4 M1 observables can be written as [14]:

hµ̂i = hµ̂i
1-B
LO⇥

0

BBBBBB@
1|{z}

O(0)

+ �hµ̂i
1-B
ERE + �hµ̂i

2-B
ERE| {z }

O(Q/⇤b)
LO magntic opert.
NLO storng inter.

+ �hµ̂i
2-B

| {z }
O(Q/⇤b)

NLO magntic opert.
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LO NLO
Parameter Value Parameter Value

�t 45.701 MeV [? ] ⇢t 1.765 fm [? ]
as -23.714 fm [? ] ⇢s 2.73 fm [? ]
ap -7.8063 fm [? ] ⇢C 2.794 fm [? ]

TABLE I: Parameters used in the numerical calculation.

the context of A < 4 M1 observables.
The three-nucleon scattering amplitude is a result of

the full solution of the coupled channel Faddeev inte-
gral equations. The di↵erent channels for 3H are the
spin-triplet - t (representing an “o↵-shell” Deuteron, d,
dibaryon), and the spin-singlet - s (nn, np). For 3He, the
contributing channels are the spin-triplet - t, spin-singlet
- s (np) and pp [? ], where the latter is required be-
cause of the Coulomb force between the protons, which
is fully considered. The nuclear amplitudes we use here
are taken explicitly from Ref. [? ], where they are bench-
marked numerically, and validated using the binding en-
ergy di↵erence between 3H-3He.

III. ADDING MAGNETIC INTERACTION
INTO ⇡/EFT

M1 observables at vanishing momentum transfer are
related to the electromagnetic nuclear current density
Ĵ (~q) at vanishing momentum transfer ~q. Explicitly, the
magnetic moment of a state is just the expectation value
of the operator:

µ̂ = �
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2
~rq ⇥ Ĵ (~q)
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, (1)

while �np is proportional to the transition matrix element
of the same operator between the neutron and proton,
S = 0 state, to the Deuteron, S = 1 state [? ? ? ].

A magnetic photon interaction with a nucleus can be
modeled e↵ectively as interaction with ever-growing clus-
ters of nucleons. In ⇡/EFT , LO includes a single nucleon
interaction with a photon, while the interaction of a mag-
netic photon with two-body clusters appears for the first
time at NLO [? ? ? ].

The one-body electromagnetic Lagrangian is given by
(see, for example, Ref. [? ]):
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where ~B is the magnetic field, e is the electron charge,
and 0 and 1 are the LECs: 0 = 0.439902328 (26) is
the isoscalar magnetic moment of the nucleon and 1 =
2.352945028 (26) is the isovector magnetic moment of the
nucleon, both given in nuclear magnetons [NM].

The NLO interaction of a magnetic photon with a two-
body nuclear field is given by the two-body electromag-
netic Lagrangian in the form of two four-nucleon-one-
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Applying the H-S transformation on ?? leads to the in-
teraction in terms of the dibaryon fields (see [? ? ]):
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and L
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2 are renormalization scale dependence two-

body LECs’ In this work, contrary to past studies on
the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in ????.
Feynman rules are extracted trivially using this fact.
Given the above, up to NLO, to keep consistency, the

A < 4 M1 observables can be written as [? ]:
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A. The A < 4 M1 matrix elements

1. Two-nucleon electromagnetic matrix elements

The matrix element of µ̂ (??) between two-nucleon
states is represented diagrammatically in Fig. ??. This
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the electromagnetic properties of light nuclei, which ar-
bitrarily took µ = m⇡, we check the full renormalizability
to essentially infinite cuto↵s and take ⇤ = m⇡, and use
the value of the parameters at µ ! 1. We note that
since the photon field ~A fulfills ~B = ~r⇥ ~A(~x), the scat-
tering operator µ̂ is given by the prefactor of ~B in ????.
Feynman rules are extracted trivially using this fact.
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The matrix element of µ̂ (??) between two-nucleon
states is represented diagrammatically in Fig. ??. This
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For	each	row,	take	oneM1	observables	as	input,	and	predict	the	other	two

ü What do we see here?

ü Everything still works even if 	𝑙>\] = 0:

ü natural convergence, 

ü same order of magnitude of expansion parameter 𝜖 ≈ 6 − 13%

ü Small STD on predictions and  cd:
ef

d:ef
≈ 𝜖> ≈ 10%

6

A. Z-parameterization is better than the
ER-parameterization at NLO

The comparison between the results of the Z- and ER-
parameterizations reveals some interesting features. The
ratio between total NLO and LO is of the same order
of magnitude, slightly smaller in the Z-parameterization.
Näıvely, this can be interpreted as an indication of a
better convergence pattern of the ER-parameterization.
However, a closer look shows the contrary. First, in the
ER-parameterization, one observes a large cancellation
between the di↵erent contributions to the NLO, i.e., be-
tween the range corrections and the pure two-body con-
tact contributions. Each of the NLO contributions is
usually more than 10% of the LO, while the final NLO
contribution is an order of magnitude smaller. The Z-
parameterization shows a natural pattern, where all the
contributions are largely of the same order of magnitude.
Second, and as a consequence of the former point, the
resulting statistical standard deviations between the pre-
dictions using the di↵erent LECs calibrations (see Ta-
ble II (a)) for the four magnetic observables are an or-
der of magnitude bigger in the ER-parameterization than
those of the Z-parameterization. Third, the statistical
fluctuations in the sizes of the LECs, as can be seen in
Table II (a), are much bigger in the ER-parameterization.

The large variations and fluctuations of the ER-
parameterization raise questions about its relevance
at NLO for predictions of electromagnetic observ-
ables. The advantage of Z-parameterization over ER-
parameterization at NLO, as explicitly demonstrated
here in the magnetic properties of the A < 4 systems, is
consistent with the initial motivation for introducing Z-
parameterization [30, 32, 35]. in the next sub-sections, we
examine the ⇡/EFTNLO’s contributions and estimate its
truncation error only for the Z-parameterization, which
shows a more natural convergence pattern, and therefore
has better predictive power.

B. Isoscalar two-body coupling is consistent with
zero

XXX: Check!
For the case of the Z-parametrization, we find that

while l
0
1
1 has minor dependence on the M1 observables

used for its calibration, i.e., �l
0
1
1
/l

0
1 ⇡ 3%, the stan-

dard deviation of l02
1 is of the same order of magnitude

as l
0
2
1, i.e., �l

0
2
1
/l

0
2
1

⇡ 70%. For the case of ER-
parametrization we find, that the di↵erences between l

0
1
1

and l
0
2
1 are more significant; while �l

0
1
1

ERE
/l

0
1
1

ERE
⇡

21%, �l
0
2
1

ERE
is two orders of magnitude larger than

l
0
2
1

ERE
.

Moreover, the NLO contribution to the Deuteron mag-
netic moment is very small, in fact, it is much smaller
than the NLO contributions of the other observables.
The two-body contribution to µ̂d, as seen in eq. (10),
depends only on l

0
2
1 = (�1.7± 1.1) · 10�2. These two

observables show that l
0
2
1 is consistent with zero. One

interpretation, which we suggest, is l
0
2
1 might be re-

garded as a higher order than NLO, in contrast to the
näıve dimensional analysis of ⇡/EFT , where l

0
1
1 and l

0
2
1

are counted as the same order as discussed earlier in
Ref.[27, 44].
To check the consistency of our conjecture, we study

the ramifications of vanishing l
01

2 . Similarly to Ta-
ble II (a), for each row in Table III, the 0

?
0 denotes the

M1 observable used for l01
1 calibration.

l01
1/10�2 hµ̂3Hi[NM] hµ̂3Hei[NM] Y 0

np

4.36 ? -2.10 1.250
4.97 3.00 ? 1.256
4.66 2.99 -2.11 ?

Mean 4.7 2.99 -2.11 1.253
std 0.6 0.01 0.01 0.006

%NLO/LO 8% 13% 6%
Exp. data 2.979 -2.128 1.253

TABLE III: Numerical results for the calibrated values of l01
1

and the resulting predictions of M1 observables up to NLO for the
Z-parameterization for the case that l02

1 = 0.

Table III shows that setting l
0
2
1 to zero does not re-

duce the quality of l01
1 and M1 predictions, in terms of

the size of the NLO contribution compared to the LO one,
and the statistical accuracy of the predictions given dif-
ferent experimental constraints. This implies that there
is no inconsistency that the iso-scalar l02

1 contribution to
the M1 matrix elements is suppressed compared to NLO
contributions. This is a main result of this paper, and it
will be discussed further in sub-section IVC. One is also
tempted to compare the predictions to the experimental
values. However, for a complete comparison, one needs to
estimate the theoretical uncertainty, which is the subject
of the next sub-section.

C. Estimating theoretical uncertainty

The aforementioned fact that EFT is a systematic ex-
pansion in some small parameter, �, is particularly help-
ful for estimating theoretical uncertainties in the calcula-
tion. A common approach is to study the residual cuto↵
dependence and to use it as a measure for the uncertainty
(see, e.g., [25, 46] in the context of ⇡/EFT ). The order-by-
order renormalization group invariance achieved at a few
times the physical breakdown scale in this work removes
this source of uncertainty.
An additional approach to estimating the theoretical

uncertainty is studying the truncation error in the sys-
tematic EFT expansion [48]. In order to do so, let us
write the ⇡/EFTexpansion for any M1 observable as,

hM1i = hM1iLO ·
�
1 + c

NLO
M1

· � +O(�2)
�
. (13)

EFT suggests that cNLO
M1

is of natural size, and thus the
truncation error is dictated by �. In ⇡/EFT , the näıve
expansion parameter usually taken as � ⇡

�t

m⇡
⇡

1
3 . Us-

ing this expansion parameter, �, is usually the starting

Conjecture 𝑙>\] = 0, 𝑖. 𝑒.,	 2-body isoscalar interaction is at least N2LO



THE ELECTROMAGNETIC WORLD

ELECTROMAGNETIC ANALOGUES TO THE WEAK OBSERVABLES

35

35µd µ 3H
µ 3Hen + p→ d + γ

M1
1-b (𝜇i,j)	𝜎, 𝜎𝜏m

2-b 𝐿,𝑠n𝑑, 𝐿>𝑑n𝑑

Operators:

N2LO

“Our theory”: pion-less EFT at NLO based on Z-parameterization

Still need to assess theoretical uncertainty:
🙁 RG invariant – no cutoff dependence as a guide

😀 Natural convergence: order by order 
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“Our theory”: pion-less EFT at NLO based on Z-parameterization

Assessing theoretical uncertainties:

6

A. Z-parameterization is better than the
ER-parameterization at NLO

The comparison between the results of the Z- and ER-
parameterizations reveals some interesting features. The
ratio between total NLO and LO is of the same order
of magnitude, slightly smaller in the Z-parameterization.
Näıvely, this can be interpreted as an indication of a
better convergence pattern of the ER-parameterization.
However, a closer look shows the contrary. First, in the
ER-parameterization, one observes a large cancellation
between the di↵erent contributions to the NLO, i.e., be-
tween the range corrections and the pure two-body con-
tact contributions. Each of the NLO contributions is
usually more than 10% of the LO, while the final NLO
contribution is an order of magnitude smaller. The Z-
parameterization shows a natural pattern, where all the
contributions are largely of the same order of magnitude.
Second, and as a consequence of the former point, the
resulting statistical standard deviations between the pre-
dictions using the di↵erent LECs calibrations (see Ta-
ble II (a)) for the four magnetic observables are an or-
der of magnitude bigger in the ER-parameterization than
those of the Z-parameterization. Third, the statistical
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and the resulting predictions of M1 observables up to NLO for the
Z-parameterization for the case that l02
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Table III shows that setting l
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1 to zero does not re-

duce the quality of l01
1 and M1 predictions, in terms of

the size of the NLO contribution compared to the LO one,
and the statistical accuracy of the predictions given dif-
ferent experimental constraints. This implies that there
is no inconsistency that the iso-scalar l02

1 contribution to
the M1 matrix elements is suppressed compared to NLO
contributions. This is a main result of this paper, and it
will be discussed further in sub-section IVC. One is also
tempted to compare the predictions to the experimental
values. However, for a complete comparison, one needs to
estimate the theoretical uncertainty, which is the subject
of the next sub-section.

C. Estimating theoretical uncertainty

The aforementioned fact that EFT is a systematic ex-
pansion in some small parameter, �, is particularly help-
ful for estimating theoretical uncertainties in the calcula-
tion. A common approach is to study the residual cuto↵
dependence and to use it as a measure for the uncertainty
(see, e.g., [25, 46] in the context of ⇡/EFT ). The order-by-
order renormalization group invariance achieved at a few
times the physical breakdown scale in this work removes
this source of uncertainty.
An additional approach to estimating the theoretical

uncertainty is studying the truncation error in the sys-
tematic EFT expansion [48]. In order to do so, let us
write the ⇡/EFTexpansion for any M1 observable as,
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Take a generic observable: 

ü 𝑐p:
qrs should be natural.

ü "Usually", we would take 𝛿 from a Naïve estimate of the theory:

ü In pionless EFT The Naïve estimate is 𝛿 ≈ tu
vw

≈ ,
Z

ü We got 𝛿 ≈ 6 − 13%

ü Surprising! (different physics than pion-less expansion?)

ü Let us estimate 𝛿 from the results!
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“Our theory”: pion-less EFT at NLO based on Z-parameterization

Assessing theoretical uncertainties:
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A. Z-parameterization is better than the
ER-parameterization at NLO

The comparison between the results of the Z- and ER-
parameterizations reveals some interesting features. The
ratio between total NLO and LO is of the same order
of magnitude, slightly smaller in the Z-parameterization.
Näıvely, this can be interpreted as an indication of a
better convergence pattern of the ER-parameterization.
However, a closer look shows the contrary. First, in the
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examine the ⇡/EFTNLO’s contributions and estimate its
truncation error only for the Z-parameterization, which
shows a more natural convergence pattern, and therefore
has better predictive power.

B. Isoscalar two-body coupling is consistent with
zero

XXX: Check!
For the case of the Z-parametrization, we find that

while l
0
1
1 has minor dependence on the M1 observables

used for its calibration, i.e., �l
0
1
1
/l

0
1 ⇡ 3%, the stan-

dard deviation of l02
1 is of the same order of magnitude

as l
0
2
1, i.e., �l

0
2
1
/l

0
2
1

⇡ 70%. For the case of ER-
parametrization we find, that the di↵erences between l

0
1
1

and l
0
2
1 are more significant; while �l

0
1
1

ERE
/l

0
1
1

ERE
⇡

21%, �l
0
2
1

ERE
is two orders of magnitude larger than

l
0
2
1

ERE
.

Moreover, the NLO contribution to the Deuteron mag-
netic moment is very small, in fact, it is much smaller
than the NLO contributions of the other observables.
The two-body contribution to µ̂d, as seen in eq. (10),
depends only on l

0
2
1 = (�1.7± 1.1) · 10�2. These two

observables show that l
0
2
1 is consistent with zero. One

interpretation, which we suggest, is l
0
2
1 might be re-

garded as a higher order than NLO, in contrast to the
näıve dimensional analysis of ⇡/EFT , where l

0
1
1 and l

0
2
1

are counted as the same order as discussed earlier in
Ref.[27, 44].
To check the consistency of our conjecture, we study

the ramifications of vanishing l
01

2 . Similarly to Ta-
ble II (a), for each row in Table III, the 0

?
0 denotes the

M1 observable used for l01
1 calibration.

l01
1/10�2 hµ̂3Hi[NM] hµ̂3Hei[NM] Y 0

np

4.36 ? -2.10 1.250
4.97 3.00 ? 1.256
4.66 2.99 -2.11 ?

Mean 4.7 2.99 -2.11 1.253
std 0.6 0.01 0.01 0.006

%NLO/LO 8% 13% 6%
Exp. data 2.979 -2.128 1.253

TABLE III: Numerical results for the calibrated values of l01
1

and the resulting predictions of M1 observables up to NLO for the
Z-parameterization for the case that l02

1 = 0.

Table III shows that setting l
0
2
1 to zero does not re-

duce the quality of l01
1 and M1 predictions, in terms of

the size of the NLO contribution compared to the LO one,
and the statistical accuracy of the predictions given dif-
ferent experimental constraints. This implies that there
is no inconsistency that the iso-scalar l02

1 contribution to
the M1 matrix elements is suppressed compared to NLO
contributions. This is a main result of this paper, and it
will be discussed further in sub-section IVC. One is also
tempted to compare the predictions to the experimental
values. However, for a complete comparison, one needs to
estimate the theoretical uncertainty, which is the subject
of the next sub-section.

C. Estimating theoretical uncertainty

The aforementioned fact that EFT is a systematic ex-
pansion in some small parameter, �, is particularly help-
ful for estimating theoretical uncertainties in the calcula-
tion. A common approach is to study the residual cuto↵
dependence and to use it as a measure for the uncertainty
(see, e.g., [25, 46] in the context of ⇡/EFT ). The order-by-
order renormalization group invariance achieved at a few
times the physical breakdown scale in this work removes
this source of uncertainty.
An additional approach to estimating the theoretical

uncertainty is studying the truncation error in the sys-
tematic EFT expansion [48]. In order to do so, let us
write the ⇡/EFTexpansion for any M1 observable as,

hM1i = hM1iLO ·
�
1 + c

NLO
M1

· � +O(�2)
�
. (13)

EFT suggests that cNLO
M1

is of natural size, and thus the
truncation error is dictated by �. In ⇡/EFT , the näıve
expansion parameter usually taken as � ⇡

�t

m⇡
⇡

1
3 . Us-

ing this expansion parameter, �, is usually the starting

Take a generic observable: 

ü Let us estimate 𝛿 from the results!

ü We take 3 measurements of 𝑎p:x
y12 ≈ 6, 8, 13%	from the NLO observables

ü From < 𝜇| >è
Thus

ü And  fluctuations in		𝑙>\] è

ü We use information theory to show that ratios of orders should be 
distributed log-normally to maximize information entropy.

ü We use the “measurements” of𝑎p:x
y12to assess the size of 𝛿 and its standard 

deviations. The finite number of measurements è t-student

7

point for estimating theoretical uncertainties [49]. Here,
for the first time, we estimate the expansion parameter,
�, directly from the numerical results we have presented.
Firstly, see Table III, the ratios of the NLO to LO con-
tribution are found to be in the range of 0.05 � 0.13.
Secondly, since µ̂d has a vanishing NLO contribution,
its deviation from the experiment can be regarded as
N2LO, and assuming a natural convergence, we expect
the ratio of this contribution to the LO contribution
to be (N2LO/LO) ⇡ (NLO/LO)2 ⇠ �

2
µ̂d
. This leads

to �µ̂d = (NLO/LO) ⇡ 0.1. Lastly, the di↵erent cali-
bration methods of l1

1 (see Table III) lead to a vari-
ation in the predictions for the di↵erent l1

1-dependent
observables. This variation represents the contribution
from higher orders. Thus, the ratio of the variation
to the NLO contribution should be of the order of the
expansion parameter. Using Table III, this leads to
�
1�3
l0
1

1 = (N2LO/NLO) ⇡ 0.04� 0.1.

If one assumes that the expansion parameter � is com-
mon to all M1 observables, then one can use the results
to assess the value of �. In order to do this, let us take the
log average of all the aforementioned estimates of the ex-

pansion parameter: log
���aN

kLO
M1

/a
Nk�1LO
M1

��� = log �+logR.

The numbers R are positive natural numbers and are
not biased; they thus should be distributed about ”1”,
and a sum over the logarithms of the di↵erent R’s should
vanish. The log average of many such estimates should
converge to log �. The fact that this is a finite-size sam-
ple means that there remains a measure of uncertainty
in determining �, represented as a distribution. We find
that at a 95% degree of belief, the expansion parameter
is within the range of 0.05 < � < 0.1. The above sug-
gests that the expansion converges faster, by more than
a factor of 3, than the näıve ⇡/EFTestimate.

The truncation error of a given expansion, given a prior
which represents the naturalness of the expansion, follows
a posterior that was calculated in Refs. [48–50]. In the
current case, since the expansion parameter is unknown,
i.e., follows the aforementioned prior distribution, one
should fold these two distributions to find the posterior
distribution of these two distributions. The formalism is
further explained in Appendix A.

In order to check the sensitivity of the expansion pa-
rameter to the number of observables, we calculate the
Cumulative Density Functions (CDFs) of �, the expan-
sion parameter, with all the n = 7 constraints: the NLO
contributions of hµ̂3Hi, hµ̂3Hei, Ynp, the N2LO contribu-
tion of hµ̂di, and the variation of l1

1 stems from the
three electromagnetic observables. Also, we calculate the
CDF of � only with the n = 4 first constraints stemming
from the order of the calculation and not from the LEC
variation. As shown in Fig. 3, with a 70% degree of be-
lief, the e↵ect of the change is rather small (a change of
about 20% in the estimated truncation error). At higher
degrees of belief, especially above 90%, the truncation
error depends significantly on the number of constraints,
as can be expected due to the small samples.

FIG. 3: Cumulative Density Functions (CDFs) of �, the
expansion parameter. The blue curve represents a calculation

that takes into account the constraints of the NLO contributions
of hµ̂3Hi, hµ̂3Hei, Ynp, the N2LO contribution of hµ̂di, and the
variation of l11. The orange curve takes into account only the

first four constraints. The red lines limit the 10%� 90%
probability range.

Figure 4 shows that at about a 70% degree of belief, the
theoretical uncertainty of the calculated M1 observables
is about 1% [51].

FIG. 4: Cumulative Density Functions (CDFs) for the di↵erent
observables, as calculated using eq. (A-2). Horizontal lines are the

70% and 90% degrees of belief. We show CDFs relevant to
expansion parameter priors with n = 4 (solid lines) and n = 7

(dashed lines) constraints, as explained in Fig. 3.

D. Final results compared to experiment

Using Z-parameterization, our final predictions for the
electromagnetic interactions are, to 70% degree of belief:
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APPENDIX A - A BAYESIAN APPROACH TO
ESTIMATE THE CONVERGENCE RATE

In the following, we expand upon the approach we used
to evaluate the truncation uncertainty and the size of the
expansion parameter of a set of observables whose expan-
sion is hM1i = hM1iLO ·

�
1 + c

NLO

M1
� + c

N2LO

M1
�
2 +O(�3)

�
.

A.I. The Bayesian probability distribution of the
expansion parameter

We use information theory arguments to understand
the expected behaviour of the expansion convergence
rate. The ratio of the kth and lth expansion terms should
be proportional to �k�l (� is the expansion parameter),
i.e.,

r
M1

k�l
�
k�l

⌘

�����
c
NkLO
M1

c
NlLO
M1

����� . (A-1)

⇡/EFT formalism suggests that r
M1

k�l
should be a natural

number. We interpret this as a statement regarding the
nature of the distribution of these numbers. In layman’s
terms, one would be surprised if these numbers deviate
much from 1. In other words, these coe�cients have some
natural range of change 1

↵
< r

M1

k�l
< ↵, where ↵ is a mea-

sure of naturalness. One can expect ↵ a factor of 2-3,
while bigger variations are acceptable as long as they are
rare. From a Bayesian point of view, rM1

k�l
are indepen-

dent and identically distributed random variables (i.i.d)
with an average of about 1 and their logarithm has a
(unknown) standard deviation of log↵.

Information theory now states that the probability
density function (pdf) f(r) should maximize the entropy
S[f ] = �

R
drf(r) log f(r) subject to the constraints

log r = 0 and (log r � log r)2 = log↵. Thus, the log-
average of rM1

k�l
�
k�l should be the expansion parameter

(k� l) log �. These lead to a pdf f(r) that is a log-normal
distribution.

One can now use a sample of the size n to
estimate the expansion parameter, i.e., log � =
1
n

P
n

i=1
1

k�l
log

⇣
r
M1(i)
k�l

�
k�l

⌘
. Then, by using Bayes theo-

rem, the resulting distribution for the expansion parame-
ter is Student’s t-distribution with n-1 degrees of freedom
log ��log �

�2/
p
n

⇠ T (�2, n� 1).

A.II. The Bayesian probability distribution of the
truncation error of an expansion, given a prior for

the expansion parameter

A good estimate for the truncation error is the max-
imal coe�cient in an expansion of order k, multiplied
by �k+1. In Refs. [48–50], a Bayesian probability distri-
bution is calculated for the truncation error under the

assumption of a natural expansion, albeit in the case
where the expansion parameter � is known. In what
follows, we combine their idea with the probability dis-
tribution for the expansion parameter found above, to
find the Bayesian probability distribution that the NLO
result will deviate by � from the true value. Then,

pr

⇣
�
��
n
a
NLO

Mk
1

on

k=1

⌘
=

Z
d�pr

⇣
�
��
n
c
NLO

Mk
1

on

k=1
, �

⌘
· pr

⇣
�
��
n
a
NLO

Mk
1

on

k=1

⌘
.

(A-2)

pr(�
��
n
c
NLO

Mk
1

on

k=1
, �) is calculated in Ref. [49], and

at NLO, is roughly constant for |�|  R⇠(�), and
decays as 1/|�|

3 for |�| � R⇠(�), where R⇠(�) =

max

⇣
1,
n
c
NLO

Mk
1

o

n=1

⌘
�
2. The exact functional form de-

pends on the prior assumption for
n
c
NLO

Mk
1

on

k=1
, but a

common behavior of all the checked priors is that at a
degree of belief of k

k+1 (translating to ⇡ 67% for NLO
calculations) the resulting truncation error is less than
R⇠(�)�k+1.
As the pdf for �, we take the Student’s t-distribution

found in the previous subsection.

APPENDIX B - CALCULATING THE M1 OF
A = 3 BOUND STATES

In this appendix, we present the general method for
calculating an an A = 3 matrix element in ⇡/EFTand its
application for calculating M1 observables of an A = 3
system.
The A = 3 magnetic moments are defined as matrix el-

ements between A = 3 bound sate wave functions of  
3H,

 
3He, using the general formalism introduced in Ref. [14].

hOi = a
J
hS, S

0

z
, I, I

0

z
, E

0
, q| O

J
O

I
O

q
|S, Sz, I, Iz, Ei ,

(B-1)
Where a

J originates from the reduction of the multi-
pole operator (See [? ]) and :

• h
1
2 , Sz, J,mz|

1
2 , S

0
z
i 6= 0

• I
0
z
=

(
�Iz O

I = ⌧
±

Iz O
I = ⌧

0

where ⌧± is isospin ladder operators.  i,(j) is the initial
(final) three-nucleon wave function as defined in Ref. [14].

1. A = 3, matrix element one-body operator

In Ref. [14], we showed that at LO, the three-nucleon
normalization can be written as:

1 =
X

µ,⌫

⌦
 
i

µ

��Onorm
µ⌫

(Ei)
�� i

⌫

↵
, (B-2)
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A. Z-parameterization is better than the
ER-parameterization at NLO

The comparison between the results of the Z- and ER-
parameterizations reveals some interesting features. The
ratio between total NLO and LO is of the same order
of magnitude, slightly smaller in the Z-parameterization.
Näıvely, this can be interpreted as an indication of a
better convergence pattern of the ER-parameterization.
However, a closer look shows the contrary. First, in the
ER-parameterization, one observes a large cancellation
between the di↵erent contributions to the NLO, i.e., be-
tween the range corrections and the pure two-body con-
tact contributions. Each of the NLO contributions is
usually more than 10% of the LO, while the final NLO
contribution is an order of magnitude smaller. The Z-
parameterization shows a natural pattern, where all the
contributions are largely of the same order of magnitude.
Second, and as a consequence of the former point, the
resulting statistical standard deviations between the pre-
dictions using the di↵erent LECs calibrations (see Ta-
ble II (a)) for the four magnetic observables are an or-
der of magnitude bigger in the ER-parameterization than
those of the Z-parameterization. Third, the statistical
fluctuations in the sizes of the LECs, as can be seen in
Table II (a), are much bigger in the ER-parameterization.

The large variations and fluctuations of the ER-
parameterization raise questions about its relevance
at NLO for predictions of electromagnetic observ-
ables. The advantage of Z-parameterization over ER-
parameterization at NLO, as explicitly demonstrated
here in the magnetic properties of the A < 4 systems, is
consistent with the initial motivation for introducing Z-
parameterization [30, 32, 35]. in the next sub-sections, we
examine the ⇡/EFTNLO’s contributions and estimate its
truncation error only for the Z-parameterization, which
shows a more natural convergence pattern, and therefore
has better predictive power.

B. Isoscalar two-body coupling is consistent with
zero

XXX: Check!
For the case of the Z-parametrization, we find that

while l
0
1
1 has minor dependence on the M1 observables

used for its calibration, i.e., �l
0
1
1
/l

0
1 ⇡ 3%, the stan-

dard deviation of l02
1 is of the same order of magnitude

as l
0
2
1, i.e., �l

0
2
1
/l

0
2
1

⇡ 70%. For the case of ER-
parametrization we find, that the di↵erences between l

0
1
1

and l
0
2
1 are more significant; while �l

0
1
1

ERE
/l

0
1
1

ERE
⇡

21%, �l
0
2
1

ERE
is two orders of magnitude larger than

l
0
2
1

ERE
.

Moreover, the NLO contribution to the Deuteron mag-
netic moment is very small, in fact, it is much smaller
than the NLO contributions of the other observables.
The two-body contribution to µ̂d, as seen in eq. (10),
depends only on l

0
2
1 = (�1.7± 1.1) · 10�2. These two

observables show that l
0
2
1 is consistent with zero. One

interpretation, which we suggest, is l
0
2
1 might be re-

garded as a higher order than NLO, in contrast to the
näıve dimensional analysis of ⇡/EFT , where l

0
1
1 and l

0
2
1

are counted as the same order as discussed earlier in
Ref.[27, 44].
To check the consistency of our conjecture, we study

the ramifications of vanishing l
01

2 . Similarly to Ta-
ble II (a), for each row in Table III, the 0

?
0 denotes the

M1 observable used for l01
1 calibration.

l01
1/10�2 hµ̂3Hi[NM] hµ̂3Hei[NM] Y 0

np

4.36 ? -2.10 1.250
4.97 3.00 ? 1.256
4.66 2.99 -2.11 ?

Mean 4.7 2.99 -2.11 1.253
std 0.6 0.01 0.01 0.006

%NLO/LO 8% 13% 6%
Exp. data 2.979 -2.128 1.253

TABLE III: Numerical results for the calibrated values of l01
1

and the resulting predictions of M1 observables up to NLO for the
Z-parameterization for the case that l02

1 = 0.

Table III shows that setting l
0
2
1 to zero does not re-

duce the quality of l01
1 and M1 predictions, in terms of

the size of the NLO contribution compared to the LO one,
and the statistical accuracy of the predictions given dif-
ferent experimental constraints. This implies that there
is no inconsistency that the iso-scalar l02

1 contribution to
the M1 matrix elements is suppressed compared to NLO
contributions. This is a main result of this paper, and it
will be discussed further in sub-section IVC. One is also
tempted to compare the predictions to the experimental
values. However, for a complete comparison, one needs to
estimate the theoretical uncertainty, which is the subject
of the next sub-section.

C. Estimating theoretical uncertainty

The aforementioned fact that EFT is a systematic ex-
pansion in some small parameter, �, is particularly help-
ful for estimating theoretical uncertainties in the calcula-
tion. A common approach is to study the residual cuto↵
dependence and to use it as a measure for the uncertainty
(see, e.g., [25, 46] in the context of ⇡/EFT ). The order-by-
order renormalization group invariance achieved at a few
times the physical breakdown scale in this work removes
this source of uncertainty.
An additional approach to estimating the theoretical

uncertainty is studying the truncation error in the sys-
tematic EFT expansion [48]. In order to do so, let us
write the ⇡/EFTexpansion for any M1 observable as,

hM1i = hM1iLO ·
�
1 + c

NLO
M1

· � +O(�2)
�
. (13)

EFT suggests that cNLO
M1

is of natural size, and thus the
truncation error is dictated by �. In ⇡/EFT , the näıve
expansion parameter usually taken as � ⇡

�t

m⇡
⇡

1
3 . Us-

ing this expansion parameter, �, is usually the starting
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point for estimating theoretical uncertainties [49]. Here,
for the first time, we estimate the expansion parameter,
�, directly from the numerical results we have presented.
Firstly, see Table III, the ratios of the NLO to LO con-
tribution are found to be in the range of 0.05 � 0.13.
Secondly, since µ̂d has a vanishing NLO contribution,
its deviation from the experiment can be regarded as
N2LO, and assuming a natural convergence, we expect
the ratio of this contribution to the LO contribution
to be (N2LO/LO) ⇡ (NLO/LO)2 ⇠ �

2
µ̂d
. This leads

to �µ̂d = (NLO/LO) ⇡ 0.1. Lastly, the di↵erent cali-
bration methods of l1

1 (see Table III) lead to a vari-
ation in the predictions for the di↵erent l1

1-dependent
observables. This variation represents the contribution
from higher orders. Thus, the ratio of the variation
to the NLO contribution should be of the order of the
expansion parameter. Using Table III, this leads to
�
1�3
l0
1

1 = (N2LO/NLO) ⇡ 0.04� 0.1.

If one assumes that the expansion parameter � is com-
mon to all M1 observables, then one can use the results
to assess the value of �. In order to do this, let us take the
log average of all the aforementioned estimates of the ex-

pansion parameter: log
���aN

kLO
M1

/a
Nk�1LO
M1

��� = log �+logR.

The numbers R are positive natural numbers and are
not biased; they thus should be distributed about ”1”,
and a sum over the logarithms of the di↵erent R’s should
vanish. The log average of many such estimates should
converge to log �. The fact that this is a finite-size sam-
ple means that there remains a measure of uncertainty
in determining �, represented as a distribution. We find
that at a 95% degree of belief, the expansion parameter
is within the range of 0.05 < � < 0.1. The above sug-
gests that the expansion converges faster, by more than
a factor of 3, than the näıve ⇡/EFTestimate.

The truncation error of a given expansion, given a prior
which represents the naturalness of the expansion, follows
a posterior that was calculated in Refs. [48–50]. In the
current case, since the expansion parameter is unknown,
i.e., follows the aforementioned prior distribution, one
should fold these two distributions to find the posterior
distribution of these two distributions. The formalism is
further explained in Appendix A.

In order to check the sensitivity of the expansion pa-
rameter to the number of observables, we calculate the
Cumulative Density Functions (CDFs) of �, the expan-
sion parameter, with all the n = 7 constraints: the NLO
contributions of hµ̂3Hi, hµ̂3Hei, Ynp, the N2LO contribu-
tion of hµ̂di, and the variation of l1

1 stems from the
three electromagnetic observables. Also, we calculate the
CDF of � only with the n = 4 first constraints stemming
from the order of the calculation and not from the LEC
variation. As shown in Fig. 3, with a 70% degree of be-
lief, the e↵ect of the change is rather small (a change of
about 20% in the estimated truncation error). At higher
degrees of belief, especially above 90%, the truncation
error depends significantly on the number of constraints,
as can be expected due to the small samples.

FIG. 3: Cumulative Density Functions (CDFs) of �, the
expansion parameter. The blue curve represents a calculation

that takes into account the constraints of the NLO contributions
of hµ̂3Hi, hµ̂3Hei, Ynp, the N2LO contribution of hµ̂di, and the
variation of l11. The orange curve takes into account only the

first four constraints. The red lines limit the 10%� 90%
probability range.

Figure 4 shows that at about a 70% degree of belief, the
theoretical uncertainty of the calculated M1 observables
is about 1% [51].

FIG. 4: Cumulative Density Functions (CDFs) for the di↵erent
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APPENDIX A - A BAYESIAN APPROACH TO
ESTIMATE THE CONVERGENCE RATE

In the following, we expand upon the approach we used
to evaluate the truncation uncertainty and the size of the
expansion parameter of a set of observables whose expan-
sion is hM1i = hM1iLO ·

�
1 + c

NLO

M1
� + c

N2LO

M1
�
2 +O(�3)

�
.

A.I. The Bayesian probability distribution of the
expansion parameter

We use information theory arguments to understand
the expected behaviour of the expansion convergence
rate. The ratio of the kth and lth expansion terms should
be proportional to �k�l (� is the expansion parameter),
i.e.,

r
M1

k�l
�
k�l

⌘

�����
c
NkLO
M1

c
NlLO
M1

����� . (A-1)

⇡/EFT formalism suggests that r
M1

k�l
should be a natural

number. We interpret this as a statement regarding the
nature of the distribution of these numbers. In layman’s
terms, one would be surprised if these numbers deviate
much from 1. In other words, these coe�cients have some
natural range of change 1

↵
< r

M1

k�l
< ↵, where ↵ is a mea-

sure of naturalness. One can expect ↵ a factor of 2-3,
while bigger variations are acceptable as long as they are
rare. From a Bayesian point of view, rM1

k�l
are indepen-

dent and identically distributed random variables (i.i.d)
with an average of about 1 and their logarithm has a
(unknown) standard deviation of log↵.

Information theory now states that the probability
density function (pdf) f(r) should maximize the entropy
S[f ] = �

R
drf(r) log f(r) subject to the constraints

log r = 0 and (log r � log r)2 = log↵. Thus, the log-
average of rM1

k�l
�
k�l should be the expansion parameter

(k� l) log �. These lead to a pdf f(r) that is a log-normal
distribution.

One can now use a sample of the size n to
estimate the expansion parameter, i.e., log � =
1
n

P
n

i=1
1

k�l
log

⇣
r
M1(i)
k�l

�
k�l

⌘
. Then, by using Bayes theo-

rem, the resulting distribution for the expansion parame-
ter is Student’s t-distribution with n-1 degrees of freedom
log ��log �

�2/
p
n

⇠ T (�2, n� 1).

A.II. The Bayesian probability distribution of the
truncation error of an expansion, given a prior for

the expansion parameter

A good estimate for the truncation error is the max-
imal coe�cient in an expansion of order k, multiplied
by �k+1. In Refs. [48–50], a Bayesian probability distri-
bution is calculated for the truncation error under the

assumption of a natural expansion, albeit in the case
where the expansion parameter � is known. In what
follows, we combine their idea with the probability dis-
tribution for the expansion parameter found above, to
find the Bayesian probability distribution that the NLO
result will deviate by � from the true value. Then,

pr

⇣
�
��
n
a
NLO

Mk
1

on

k=1

⌘
=

Z
d�pr

⇣
�
��
n
c
NLO

Mk
1

on

k=1
, �

⌘
· pr

⇣
�
��
n
a
NLO

Mk
1

on

k=1

⌘
.

(A-2)

pr(�
��
n
c
NLO

Mk
1

on

k=1
, �) is calculated in Ref. [49], and

at NLO, is roughly constant for |�|  R⇠(�), and
decays as 1/|�|

3 for |�| � R⇠(�), where R⇠(�) =

max

⇣
1,
n
c
NLO

Mk
1

o

n=1

⌘
�
2. The exact functional form de-

pends on the prior assumption for
n
c
NLO

Mk
1

on

k=1
, but a

common behavior of all the checked priors is that at a
degree of belief of k

k+1 (translating to ⇡ 67% for NLO
calculations) the resulting truncation error is less than
R⇠(�)�k+1.
As the pdf for �, we take the Student’s t-distribution

found in the previous subsection.

APPENDIX B - CALCULATING THE M1 OF
A = 3 BOUND STATES

In this appendix, we present the general method for
calculating an an A = 3 matrix element in ⇡/EFTand its
application for calculating M1 observables of an A = 3
system.
The A = 3 magnetic moments are defined as matrix el-

ements between A = 3 bound sate wave functions of  
3H,

 
3He, using the general formalism introduced in Ref. [14].

hOi = a
J
hS, S

0

z
, I, I

0

z
, E

0
, q| O

J
O

I
O

q
|S, Sz, I, Iz, Ei ,

(B-1)
Where a

J originates from the reduction of the multi-
pole operator (See [? ]) and :

• h
1
2 , Sz, J,mz|

1
2 , S

0
z
i 6= 0

• I
0
z
=

(
�Iz O

I = ⌧
±

Iz O
I = ⌧

0

where ⌧± is isospin ladder operators.  i,(j) is the initial
(final) three-nucleon wave function as defined in Ref. [14].

1. A = 3, matrix element one-body operator

In Ref. [14], we showed that at LO, the three-nucleon
normalization can be written as:

1 =
X

µ,⌫

⌦
 
i

µ

��Onorm
µ⌫

(Ei)
�� i

⌫

↵
, (B-2)
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A. Z-parameterization is better than the
ER-parameterization at NLO

The comparison between the results of the Z- and ER-
parameterizations reveals some interesting features. The
ratio between total NLO and LO is of the same order
of magnitude, slightly smaller in the Z-parameterization.
Näıvely, this can be interpreted as an indication of a
better convergence pattern of the ER-parameterization.
However, a closer look shows the contrary. First, in the
ER-parameterization, one observes a large cancellation
between the di↵erent contributions to the NLO, i.e., be-
tween the range corrections and the pure two-body con-
tact contributions. Each of the NLO contributions is
usually more than 10% of the LO, while the final NLO
contribution is an order of magnitude smaller. The Z-
parameterization shows a natural pattern, where all the
contributions are largely of the same order of magnitude.
Second, and as a consequence of the former point, the
resulting statistical standard deviations between the pre-
dictions using the di↵erent LECs calibrations (see Ta-
ble II (a)) for the four magnetic observables are an or-
der of magnitude bigger in the ER-parameterization than
those of the Z-parameterization. Third, the statistical
fluctuations in the sizes of the LECs, as can be seen in
Table II (a), are much bigger in the ER-parameterization.

The large variations and fluctuations of the ER-
parameterization raise questions about its relevance
at NLO for predictions of electromagnetic observ-
ables. The advantage of Z-parameterization over ER-
parameterization at NLO, as explicitly demonstrated
here in the magnetic properties of the A < 4 systems, is
consistent with the initial motivation for introducing Z-
parameterization [30, 32, 35]. in the next sub-sections, we
examine the ⇡/EFTNLO’s contributions and estimate its
truncation error only for the Z-parameterization, which
shows a more natural convergence pattern, and therefore
has better predictive power.

B. Isoscalar two-body coupling is consistent with
zero

XXX: Check!
For the case of the Z-parametrization, we find that

while l
0
1
1 has minor dependence on the M1 observables

used for its calibration, i.e., �l
0
1
1
/l

0
1 ⇡ 3%, the stan-

dard deviation of l02
1 is of the same order of magnitude

as l
0
2
1, i.e., �l

0
2
1
/l

0
2
1

⇡ 70%. For the case of ER-
parametrization we find, that the di↵erences between l

0
1
1

and l
0
2
1 are more significant; while �l

0
1
1

ERE
/l

0
1
1

ERE
⇡

21%, �l
0
2
1

ERE
is two orders of magnitude larger than

l
0
2
1

ERE
.

Moreover, the NLO contribution to the Deuteron mag-
netic moment is very small, in fact, it is much smaller
than the NLO contributions of the other observables.
The two-body contribution to µ̂d, as seen in eq. (10),
depends only on l

0
2
1 = (�1.7± 1.1) · 10�2. These two

observables show that l
0
2
1 is consistent with zero. One

interpretation, which we suggest, is l
0
2
1 might be re-

garded as a higher order than NLO, in contrast to the
näıve dimensional analysis of ⇡/EFT , where l

0
1
1 and l

0
2
1

are counted as the same order as discussed earlier in
Ref.[27, 44].
To check the consistency of our conjecture, we study

the ramifications of vanishing l
01

2 . Similarly to Ta-
ble II (a), for each row in Table III, the 0

?
0 denotes the

M1 observable used for l01
1 calibration.

l01
1/10�2 hµ̂3Hi[NM] hµ̂3Hei[NM] Y 0

np

4.36 ? -2.10 1.250
4.97 3.00 ? 1.256
4.66 2.99 -2.11 ?

Mean 4.7 2.99 -2.11 1.253
std 0.6 0.01 0.01 0.006

%NLO/LO 8% 13% 6%
Exp. data 2.979 -2.128 1.253

TABLE III: Numerical results for the calibrated values of l01
1

and the resulting predictions of M1 observables up to NLO for the
Z-parameterization for the case that l02

1 = 0.

Table III shows that setting l
0
2
1 to zero does not re-

duce the quality of l01
1 and M1 predictions, in terms of

the size of the NLO contribution compared to the LO one,
and the statistical accuracy of the predictions given dif-
ferent experimental constraints. This implies that there
is no inconsistency that the iso-scalar l02

1 contribution to
the M1 matrix elements is suppressed compared to NLO
contributions. This is a main result of this paper, and it
will be discussed further in sub-section IVC. One is also
tempted to compare the predictions to the experimental
values. However, for a complete comparison, one needs to
estimate the theoretical uncertainty, which is the subject
of the next sub-section.

C. Estimating theoretical uncertainty

The aforementioned fact that EFT is a systematic ex-
pansion in some small parameter, �, is particularly help-
ful for estimating theoretical uncertainties in the calcula-
tion. A common approach is to study the residual cuto↵
dependence and to use it as a measure for the uncertainty
(see, e.g., [25, 46] in the context of ⇡/EFT ). The order-by-
order renormalization group invariance achieved at a few
times the physical breakdown scale in this work removes
this source of uncertainty.
An additional approach to estimating the theoretical

uncertainty is studying the truncation error in the sys-
tematic EFT expansion [48]. In order to do so, let us
write the ⇡/EFTexpansion for any M1 observable as,

hM1i = hM1iLO ·
�
1 + c

NLO
M1

· � +O(�2)
�
. (13)

EFT suggests that cNLO
M1

is of natural size, and thus the
truncation error is dictated by �. In ⇡/EFT , the näıve
expansion parameter usually taken as � ⇡

�t

m⇡
⇡

1
3 . Us-

ing this expansion parameter, �, is usually the starting
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point for estimating theoretical uncertainties [49]. Here,
for the first time, we estimate the expansion parameter,
�, directly from the numerical results we have presented.
Firstly, see Table III, the ratios of the NLO to LO con-
tribution are found to be in the range of 0.05 � 0.13.
Secondly, since µ̂d has a vanishing NLO contribution,
its deviation from the experiment can be regarded as
N2LO, and assuming a natural convergence, we expect
the ratio of this contribution to the LO contribution
to be (N2LO/LO) ⇡ (NLO/LO)2 ⇠ �

2
µ̂d
. This leads

to �µ̂d = (NLO/LO) ⇡ 0.1. Lastly, the di↵erent cali-
bration methods of l1

1 (see Table III) lead to a vari-
ation in the predictions for the di↵erent l1

1-dependent
observables. This variation represents the contribution
from higher orders. Thus, the ratio of the variation
to the NLO contribution should be of the order of the
expansion parameter. Using Table III, this leads to
�
1�3
l0
1

1 = (N2LO/NLO) ⇡ 0.04� 0.1.

If one assumes that the expansion parameter � is com-
mon to all M1 observables, then one can use the results
to assess the value of �. In order to do this, let us take the
log average of all the aforementioned estimates of the ex-

pansion parameter: log
���aN

kLO
M1

/a
Nk�1LO
M1

��� = log �+logR.

The numbers R are positive natural numbers and are
not biased; they thus should be distributed about ”1”,
and a sum over the logarithms of the di↵erent R’s should
vanish. The log average of many such estimates should
converge to log �. The fact that this is a finite-size sam-
ple means that there remains a measure of uncertainty
in determining �, represented as a distribution. We find
that at a 95% degree of belief, the expansion parameter
is within the range of 0.05 < � < 0.13. The above sug-
gests that the expansion converges faster, by more than
a factor of 3, than the näıve ⇡/EFTestimate.

The truncation error of a given expansion, given a prior
which represents the naturalness of the expansion, follows
a posterior that was calculated in Refs. [48–50]. In the
current case, since the expansion parameter is unknown,
i.e., follows the aforementioned prior distribution, one
should fold these two distributions to find the posterior
distribution of these two distributions. The formalism is
further explained in Appendix A.

In order to check the sensitivity of the expansion pa-
rameter to the number of observables, we calculate the
Cumulative Density Functions (CDFs) of �, the expan-
sion parameter, with all the n = 7 constraints: the NLO
contributions of hµ̂3Hi, hµ̂3Hei, Ynp, the N2LO contribu-
tion of hµ̂di, and the variation of l1

1 stems from the
three electromagnetic observables. Also, we calculate the
CDF of � only with the n = 4 first constraints stemming
from the order of the calculation and not from the LEC
variation. As shown in Fig. 3, with a 70% degree of be-
lief, the e↵ect of the change is rather small (a change of
about 20% in the estimated truncation error). At higher
degrees of belief, especially above 90%, the truncation
error depends significantly on the number of constraints,
as can be expected due to the small samples.

FIG. 3: Cumulative Density Functions (CDFs) of �, the
expansion parameter. The blue curve represents a calculation

that takes into account the constraints of the NLO contributions
of hµ̂3Hi, hµ̂3Hei, Ynp, the N2LO contribution of hµ̂di, and the
variation of l11. The orange curve takes into account only the

first four constraints. The red lines limit the 10%� 90%
probability range.

Figure 4 shows that at about a 70% degree of belief, the
theoretical uncertainty of the calculated M1 observables
is about 1% [51].

FIG. 4: Cumulative Density Functions (CDFs) for the di↵erent
observables, as calculated using eq. (A-2). Horizontal lines are the

70% and 90% degrees of belief. We show CDFs relevant to
expansion parameter priors with n = 4 (solid lines) and n = 7

(dashed lines) constraints, as explained in Fig. 3.

D. Final results compared to experiment

Using Z-parameterization, our final predictions for the
electromagnetic interactions are, to 70% degree of belief:
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APPENDIX A - A BAYESIAN APPROACH TO
ESTIMATE THE CONVERGENCE RATE

In the following, we expand upon the approach we used
to evaluate the truncation uncertainty and the size of the
expansion parameter of a set of observables whose expan-
sion is hM1i = hM1iLO ·

�
1 + c

NLO

M1
� + c

N2LO

M1
�
2 +O(�3)

�
.

A.I. The Bayesian probability distribution of the
expansion parameter

We use information theory arguments to understand
the expected behaviour of the expansion convergence
rate. The ratio of the kth and lth expansion terms should
be proportional to �k�l (� is the expansion parameter),
i.e.,

r
M1

k�l
�
k�l

⌘

�����
c
NkLO
M1

c
NlLO
M1

����� . (A-1)

⇡/EFT formalism suggests that r
M1

k�l
should be a natural

number. We interpret this as a statement regarding the
nature of the distribution of these numbers. In layman’s
terms, one would be surprised if these numbers deviate
much from 1. In other words, these coe�cients have some
natural range of change 1

↵
< r

M1

k�l
< ↵, where ↵ is a mea-

sure of naturalness. One can expect ↵ a factor of 2-3,
while bigger variations are acceptable as long as they are
rare. From a Bayesian point of view, rM1

k�l
are indepen-

dent and identically distributed random variables (i.i.d)
with an average of about 1 and their logarithm has a
(unknown) standard deviation of log↵.

Information theory now states that the probability
density function (pdf) f(r) should maximize the entropy
S[f ] = �

R
drf(r) log f(r) subject to the constraints

log r = 0 and (log r � log r)2 = log↵. Thus, the log-
average of rM1

k�l
�
k�l should be the expansion parameter

(k� l) log �. These lead to a pdf f(r) that is a log-normal
distribution.

One can now use a sample of the size n to
estimate the expansion parameter, i.e., log � =
1
n

P
n

i=1
1

k�l
log

⇣
r
M1(i)
k�l

�
k�l

⌘
. Then, by using Bayes theo-

rem, the resulting distribution for the expansion parame-
ter is Student’s t-distribution with n-1 degrees of freedom
log ��log �

�2/
p
n

⇠ T (�2, n� 1).

A.II. The Bayesian probability distribution of the
truncation error of an expansion, given a prior for

the expansion parameter

A good estimate for the truncation error is the max-
imal coe�cient in an expansion of order k, multiplied
by �k+1. In Refs. [48–50], a Bayesian probability distri-
bution is calculated for the truncation error under the

assumption of a natural expansion, albeit in the case
where the expansion parameter � is known. In what
follows, we combine their idea with the probability dis-
tribution for the expansion parameter found above, to
find the Bayesian probability distribution that the NLO
result will deviate by � from the true value. Then,

pr

⇣
�
��
n
a
NLO

Mk
1

on

k=1

⌘
=

Z
d�pr

⇣
�
��
n
c
NLO

Mk
1

on

k=1
, �

⌘
· pr

⇣
�
��
n
a
NLO

Mk
1

on

k=1

⌘
.

(A-2)

pr(�
��
n
c
NLO

Mk
1

on

k=1
, �) is calculated in Ref. [49], and

at NLO, is roughly constant for |�|  R⇠(�), and
decays as 1/|�|

3 for |�| � R⇠(�), where R⇠(�) =

max

⇣
1,
n
c
NLO

Mk
1

o

n=1

⌘
�
2. The exact functional form de-

pends on the prior assumption for
n
c
NLO

Mk
1

on

k=1
, but a

common behavior of all the checked priors is that at a
degree of belief of k

k+1 (translating to ⇡ 67% for NLO
calculations) the resulting truncation error is less than
R⇠(�)�k+1.
As the pdf for �, we take the Student’s t-distribution

found in the previous subsection.

APPENDIX B - CALCULATING THE M1 OF
A = 3 BOUND STATES

In this appendix, we present the general method for
calculating an an A = 3 matrix element in ⇡/EFTand its
application for calculating M1 observables of an A = 3
system.
The A = 3 magnetic moments are defined as matrix el-

ements between A = 3 bound sate wave functions of  
3H,

 
3He, using the general formalism introduced in Ref. [14].

hOi = a
J
hS, S

0

z
, I, I

0

z
, E

0
, q| O

J
O

I
O

q
|S, Sz, I, Iz, Ei ,

(B-1)
Where a

J originates from the reduction of the multi-
pole operator (See [? ]) and :

• h
1
2 , Sz, J,mz|

1
2 , S

0
z
i 6= 0

• I
0
z
=

(
�Iz O

I = ⌧
±

Iz O
I = ⌧

0

where ⌧± is isospin ladder operators.  i,(j) is the initial
(final) three-nucleon wave function as defined in Ref. [14].

1. A = 3, matrix element one-body operator

In Ref. [14], we showed that at LO, the three-nucleon
normalization can be written as:

1 =
X

µ,⌫

⌦
 
i

µ

��Onorm
µ⌫

(Ei)
�� i

⌫

↵
, (B-2)

The theoretical uncertainty of
M1 observables in our theory 
is about 1% at 70% DOB
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This work [NM] Experiment [NM]
Y 0
np = 1.253± 0.006 1.2532± 0.0019 [17]

hµ̂3Hi = 2.99± 0.015 2.97896... [15]
hµ̂3Hei = �2.11± 0.02 �2.12750... [15]
hµ̂di = 0.88± 0.01 0.857 [16] ,

where the uncertainty for each M1 observable is esti-
mated from our calculation (see Fig. 3). These results
are visually shown in Fig. 5, where for each observable,
the bands correspond to the theoretical uncertainty in
the Z-parameterization calculation, as calculated in the
previous sub-section.

FIG. 5: The strength of A = 2, 3 M1 observables with a 70%
degree of belief. The bands correspond to the theoretical

Z-parameterization theoretical uncertainty from the calculations
shown Fig. 4. The stars are the experimental values.

V. DISCUSSION

The results presented in the previous section show that
within

VI. SUMMARY

In this paper, we present a detailed study of A = 2, 3
M1 observables using ⇡/EFTup to NLO, analytically built
and numerically verified to be RG invariant by order-by-
order consistent and controlled perturbative expansion,
to describe the structure and dynamics of the reactions,
making use of the low characteristic momentum of the
reactions and the involved nuclei.

We check two di↵erent NLO arrangements, i.e., ER-
parameterization, uses at NLO the value of the 3

S1 ef-
fective range, and Z-parameterization, which fixes the
Deuteron pole position exactly at NLO. In both cases,
the next-to-leading order contribution amounts to less
than 10% correction, which is smaller than the näıve ex-
pansion parameter of ⇡/EFT .

The four observables are used to fix, in six di↵erent
ways, l

0
1
1 and l

0
2
1, two unknown NLO LECs repre-

senting two-nucleon electromagnetic iso-vector and iso-
scalar nuclear currents, respectively. In both parame-
terizations, we find that the correction to their matrix
element originating from the two-body iso-scalar low-
energy constant, l02

1, is consistent with zero, in contrast
to the näıve dimensional analysis of pionless EFT. To-
gether with the small expansion parameter, these are two
surprising deviations from the näıve ⇡/EFTexpectation,
which we discuss in a future publication [? ]?? (later???).
The validity of the NLO parameterizations is judged
using the fluctuations in the values of the predicted
observables, using the resulting spectrum of LEC val-
ues. The Z-parameterization is found to have a natural
convergence pattern and very stable results. The ER-
parameterization, however, is found to have large fluctu-
ations in the predicted results. We thus focused on the
Z-parameterization.

We demonstrated that by using the Z-
parameterization, the values of the short-range strengths
are consistent in the A = 2 and A = 3 systems, showing
no need in a three-body current. We developed a
Bayesian approach to estimate the theoretical uncer-
tainty due to the truncation of the EFT expansion. This
was found to be about 1% for the calculated observables.
The results reproduce to high precision the experimental
values of the M1 observables, within a 70% degree of
belief band.

We found that ⇡/EFTpredictions for the electromag-
netic observables have unprecedented precision and ac-
curacy, comparable with �EFT calculations [52], which
have about a factor of 3 more parameters and lack the ro-
bust uncertainty estimate and consistency we give here.
These, as summarized in Fig. 5, verify and validate the
way we applied ⇡/EFTat NLO.

Hence, this calculation opens a new path to model-
independent calculations of low-energy electromagnetic
and weak reactions, including reactions taking place in
the interior of stars.
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THE ELECTROMAGNETIC WORLD

ELECTROMAGENTIC OBSERVABLES OF A=2, 3 NUCLEI

40

n + p→ d + γ µ 3He

µ 3H

▸ Perfect post-diction,
within 1% theoretical uncertainty!

▸ Amazing precision and accuracy.

▸ Surprising:

▸ Changes in Naïve pion-less EFT
counting, by 𝑙>\] = 0. 

▸ Is this a result of the flow to very 
low energies of chiral EFT, where 
iso-vector pion leads to 𝑙,\] at NLO, 
while 𝑙>\] comes at N3LO?

▸ Unnaturally small expansion parameter, 𝛿 ≈ 5 − 10% << tu
vw

≈ ,
Z
!

▸ Hinting different physics than pionless? Unitary expansion (van Kolck, 
König)? Wigner symmetry (Phillips, Vanasse)?

▸ This is the origin of the “shell model” like behavior of these magnetic 
moments, while the wave functions are very far from shell model – Can this 
be extended to heavier nuclei? 

µd



THE ELECTROMAGNETIC WORLD

ELECTROMAGNETIC ANALOGUES TO THE WEAK OBSERVABLES
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41µd µ 3H
µ 3Hen + p→ d + γ

3H→3 He + e− +νe

e en

p + p→ d +νe + e
+

e en

n→ p + e− +νe

e

νe

µ p µn

Weak	observables

M1	observables	– ALL	VERY	WELL	MEASURED

M1 Weak
1-b (𝜇i,j)	𝜎, 𝜎𝜏m 𝑔*	𝜎𝜏�,�

2-b 𝐿,𝑠n𝑑, 𝐿>𝑑n𝑑 𝐿,*𝑠n𝑑

Operators:

3H and 3He have almost 
the same wave function :

N2LO

“Our theory”: pion-less EFT at NLO based on Z-parameterization

Take expansion parameter 
CDF from M1 analysis!



PROTON-PROTON FUSION – FINAL RESULT

A PREDICTIVE AND VERIFIED THEORY, A CHECKLIST:

42

theoretical 
uncertainty

gA
stat.+syst

unc.

3H halflife
syst.
unc.

𝑆,, 𝑔* = 1.275 = 4.16 ± 0.08 ±�; 0.03 ±  0.02 ⋅ 10�>ZMeV ⋅ 	fm>

A predicted increase of 2-6% over SFII



EFFECT OF NEW S11 ON SSM 43

NEUTRINO FLUXES WITH PREVIOUS S11 VALUE
Old composition SSM New composition SSM      
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EFFECT OF NEW S11 ON NEUTRINO FLUXES
Old composition SSM New composition SSM      

4.72(1 ± 0.08) 4.31(1 ± 0.08)
4.91(1 ± 0.15) 4.05(1 ± 0.15)

BETTER AGREEMENT USING OLD SSM
WORSE AGREEMENT USING NEW SSM
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EFFECT OF NEW S11 ON NEUTRINO FLUXES

Old composition SSM

New composition SSM

AN ’EVEN STRONGER’ 
“SOLAR COMPOSITION PROBLEM”

SOLAR NEUTRINO FLUXES FAVOR OLD COMPOSITION!



SUMMARY

SUMMARY
▸ SOLAR PP-FUSION:

▸ Controlled, perturbative calculations, with reliable order by order convergence, indicate an 
increase of 2-6% over the current standard! 

▸ Predicted neutrino fluxes dis-favor new solar composition assessments. 

▸ A new perspective on the solar composition problem, or a new solar neutrino problem?

▸ Disagreement with 𝜒𝐸𝐹𝑇 calculations (at the 90% level), though they are still plagued by my 
mistake J

▸ Perfect post-diction of A=2, 3 magnetic M1 observables, within 1% theoretical uncertainty!

▸ Surprises hint that something is weird in the pionless EFT description of these reactions:

▸ Deviation from the naïve pion-less EFT counting of the magnetic interaction, by 𝑙>\] = 0. 

▸ Unnaturally small expansion parameter, 𝛿 ≈ 5 − 10% << tu
vw

≈ ,
Z

is the source of shell model 
behavior of M1 observables in A=2, 3 systems! 

46


