

### DORON GAZIT RACAH INSTITUTE OF PHYSICS HEBREW UNIVERSITY OF JERUSALEM

# FROM SOLAR COMPOSITION PROBLEM TO NEW SOLAR NEUTRINO PROBLEM — The electroweak properties of A=2, 3 perspective



# THE SUN AS A LABORATORY

- The interior of the Sun is an extreme environment, not found in terrestrial laboratories, and thus a natural scenario to search for new physics signatures.
- i.e., building a Solar Model and comparing with experiment allows viewing the Sun as a laboratory.

<u>Helioseismology</u> - "sun-quakes" on the surface which can tell us about the structure to the core.

<u>Neutrinos</u>- probe the temperature of the core.





Basu 2009, Villante 2010, Serenelli (2013)

#### INTRODUCTION

**x** 3

# THE SUN AS A LABORATORY

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000









#### Nobel prize 2002: the solar neutrino problem

#### **<u>Predicted</u>** Solar neutrino flux can not match measured solar neutrino flux</u>

4

# **THE SUN AS A LABORATORY**

![](_page_3_Picture_3.jpeg)

![](_page_3_Picture_4.jpeg)

![](_page_3_Picture_5.jpeg)

Takaaki Kajita

![](_page_3_Picture_7.jpeg)

Arthur B. McDonald

![](_page_3_Picture_9.jpeg)

Solution - neutrino masses and oscillations

Hinted from solar measurements, proven terrestrially

# **STANDARD SOLAR MODELS**

![](_page_4_Figure_2.jpeg)

![](_page_4_Figure_3.jpeg)

![](_page_5_Picture_1.jpeg)

# ASPLUND ET AL. (2009) SOLAR COMPOSITION REEVALUATION

A downward revision in the abundance of some of the elements in the solar mixture, due to better solar atmosphere simulations, as well as meteorite data.

| Element | GS98            | AGSS09          | $\delta z_i$ |
|---------|-----------------|-----------------|--------------|
| С       | $8.52\pm0.06$   | $8.43 \pm 0.05$ | 0.23         |
| N       | $7.92\pm0.06$   | $7.83 \pm 0.05$ | 0.23         |
| 0       | $8.83\pm0.06$   | $8.69\pm0.05$   | 0.38         |
| Ne      | $8.08\pm0.06$   | $7.93\pm0.10$   | 0.41         |
| Mg      | $7.58\pm0.01$   | $7.53 \pm 0.01$ | 0.12         |
| Si      | $7.56 \pm 0.01$ | $7.51\pm0.01$   | 0.12         |
| S       | $7.20\pm0.06$   | $7.15\pm0.02$   | 0.12         |
| Fe      | $7.50\pm0.01$   | $7.45\pm0.01$   | 0.12         |
| Z/X     | 0.0229          | 0.0178          | 0.29         |

 $[I/H] \equiv \log (N_I/N_H) + 12$ 

# THE SOLAR COMPOSITION PROBLEM

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_3.jpeg)

# THE SOLAR COMPOSITION PROBLEM

![](_page_7_Figure_2.jpeg)

![](_page_7_Figure_3.jpeg)

|                      | AGSS09                | GS98                   | Obs.                |
|----------------------|-----------------------|------------------------|---------------------|
| $Y_{\rm b}$          | $0.2319(1 \pm 0.013)$ | $0.2429(1 \pm 0.013)$  | $0.2485 \pm 0.0035$ |
| $R_{ m b}/R_{\odot}$ | $0.7231(1\pm 0.0033)$ | $0.7124(1 \pm 0.0033)$ | $0.713 \pm 0.001$   |
|                      |                       |                        |                     |

 $\sim 3 - 4\sigma \text{ discrepancy!}$ Note:  $4\sigma \text{ deviation is just 1.5\%...}$ 

#### A precision type of problem demands assessing uncertainties Serenelli et al 2013 Bailey, J. E., et al. 2009

![](_page_8_Picture_0.jpeg)

### WE TRY TO ANSWER THE FOLLOWING QUESTIONS

### HOW WELL DO WE UNDERSTAND MICROSCOPIC PHENOMENA IN THE SUN?

### WHAT IS THE ORIGIN OF CURRENT UNCERTAINTY ESTIMATES?

**CAN WE IMPROVE ON THESE?** 

# THE SOLAR COMPOSITION PROBLEM

![](_page_9_Figure_2.jpeg)

![](_page_9_Figure_3.jpeg)

## "IN THE NEWS"

Krief, Feigel, DG, ApJ (2016a,b). Krief, Feigel, Kurzweil, DG, ApJ (2017). Segev, DG, Physica A (2018). Krief, Segev, DG, in preparation.

### MAJOR UNNOTICED UNCERTAINTIES IN SOLAR OPACITIES

![](_page_10_Picture_4.jpeg)

# THE SOLAR COMPOSITION PROBLEM

![](_page_11_Figure_2.jpeg)

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_0.jpeg)

# **PROTON-PROTON FUSION IN THE SUN**

Deleon, Platter, DG (2016, 2019). Deleon, DG (2019,2020a,b)

![](_page_13_Picture_1.jpeg)

### MOTIVATION: WEAK PROTON-PROTON FUSION IN THE SUN

![](_page_13_Figure_3.jpeg)

Theory challenge: accuracy and precision

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

#### MODERN NUCLEAR THEORIES – EFFECTIVE FIELD THEORIES OF QCD

![](_page_16_Figure_1.jpeg)

 $\chi$ EFT: Acharya et al, Marcucci et al, calculations:

17

Many parameters ~ 25-40 (pions, nucleons, contacts).

Non-renormalizable - theory depends on the cutoff, questionable order by order convergence.

Challenging to assess systematic uncertainties.

Weinberg (1991), van-Kolck (1992), Kaplan (1996)...

![](_page_17_Picture_1.jpeg)

# CAN WE VALIDATE AND VERIFY THESE RESULTS? CAN WE ESTIMATE "SYSTEMATIC" UNCERTAINTIES?

<u>Use pion-less EFT</u>

### MODERN NUCLEAR THEORIES – EFFECTIVE FIELD THEORIES OF QCD

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

Weinberg (1991), van-Kolck (1992), Kaplan (1996)...

![](_page_19_Picture_1.jpeg)

### A FULLY PERTURBATIVE PIONLESS EFT A=2, 3 CALCULATION @NLO

#### 5 Leading Order Parameters

- nn and 2-np Scattering lengths: <sup>3</sup>S<sub>1</sub>, <sup>1</sup>S<sub>0</sub>
- pp scattering length.
- Three body force strength to prevent Thomas collapse.

![](_page_19_Figure_7.jpeg)

- isospin dependent 3NF to prevent logarithmic divergence in the binding energy of <sup>3</sup>He.
- Only <sup>3</sup>H and <sup>3</sup>He binding energies are "many-body" parameters. All the restvery well experimentally known scattering parameters.

![](_page_20_Picture_1.jpeg)

### **ADDING THE WEAK INTERACTION**

$$\operatorname{GT}_n = \langle n \| \operatorname{GT}^{(-)} \| p \rangle = \sqrt{3} \cdot \left( \frac{1}{g_A} \right)$$

axial coupling constant, "known" from neutron  $\beta$  decay.

*g*<sub>A</sub> ► **5+1** NLO parameters:

Two body  $GT_{^{3}H}^{emp} = \langle {}^{3}H \| GT^{(-)} \| {}^{3}He \rangle = \sqrt{3} \cdot \left( \underbrace{1.213 \pm 0.002}{g_A} \right)$ 

2-body analogue of  $g_A$ , we fix it from <sup>3</sup>H decay rate.

![](_page_20_Picture_9.jpeg)

 $L_{1A}$ 

ADDING THE WEAK INTERACTION

► **5+1** LO Parameters

One body

![](_page_21_Figure_1.jpeg)

$$\mathrm{GT}_n = \langle n \| \mathrm{GT}^{(-)} \| p \rangle = \sqrt{3} \cdot \left(\frac{1}{g_A}\right)$$

axial coupling constant, "known" from neutron  $\beta$  decay.

![](_page_21_Figure_4.jpeg)

![](_page_22_Figure_1.jpeg)

### A FULLY PERTURBATIVE PIONLESS EFT A=2, 3 CALCULATION @NLO

![](_page_22_Figure_3.jpeg)

✓ However, we find small NLO contribution  $\approx 4\%$ ...

✓ How do we know if *c* is unnaturally small or  $\delta$ ? Is this unique for GT?

How do assess expansion parameter and uncertainty?

✓ How do we know if this is valid?

![](_page_23_Picture_1.jpeg)

![](_page_23_Figure_3.jpeg)

M1 observables – ALL VERY WELL MEASURED

![](_page_24_Figure_3.jpeg)

M1 observables – ALL VERY WELL MEASURED

![](_page_25_Figure_3.jpeg)

# 27

# **ELECTROMAGNETIC ANALOGUES TO THE WEAK OBSERVABLES**

#### M1 observables – ALL VERY WELL MEASURED

![](_page_26_Figure_4.jpeg)

![](_page_27_Picture_1.jpeg)

For each row, take two M1 observables as input, and predict the other two

![](_page_27_Figure_4.jpeg)

![](_page_28_Picture_1.jpeg)

For each row, take two M1 observables as input, and predict the other two

![](_page_28_Figure_4.jpeg)

- ✓ The NLO contribution is about  $\epsilon \approx 5 10\%$  We "expected"  $\epsilon \approx \frac{1}{3}$
- ER parameterization seems more precise; However, fluctuations within contributions are significantly bigger than total one.

![](_page_29_Picture_1.jpeg)

For each row, take two M1 observables as input, and predict the other two

![](_page_29_Figure_4.jpeg)

The deuteron magnetic moment receives unnaturally small contribution

(ER — PARAMETERIZTION)

$$\langle \hat{\mu}_d \rangle = \kappa_0 \left\{ 2Z_d^{\text{NLO}} + Z_d^{\text{LO}} \left[ \gamma_t \rho_t L_2(\mu) \right] \right\}$$
$$= 2\kappa_0 \left[ 1 + \underbrace{0}_{\text{NLO storng inter.}} + \underbrace{l'_2(\mu)}_{\text{NLO magnetic opert.}} \right]$$
"Z"-PARAMETERIZTION (ER –PARAMETERIZTION)

![](_page_30_Picture_1.jpeg)

For each row, take two M1 observables as input, and predict the other two

| $\delta \langle \hat{\mu} \rangle^{2-B}$ |
|------------------------------------------|
| $\sqrt{NLO}$ $\sqrt{\mu}$ $\sqrt{NLO}$   |
| strong magnetic                          |
| inter. opert.                            |
|                                          |
| $(11\%) \mid 5\% \ (10\%)$               |
|                                          |
| $(25\%) \mid 10\% \ (29\%)$              |
| (2070) 1070 $(2070)$                     |
| (0%) 1% (1%)                             |
|                                          |
| (2%) 1% $(12%)$                          |
| (2/0)   4/0 (12/0)                       |
|                                          |

What do we see here?

**"Z"-PARAMETERIZTION** 

✓ The deuteron magnetic moment receives unnaturally small contribution

(ER – PARAMETERIZTION)

 $\checkmark \text{ The statistical analysis shows that } l_2^{\prime \infty} \text{ is consistent with 0.} \\ \Delta l_1^{\prime \infty} / l_1^{\prime} \approx 3\% \qquad \Delta l_2^{\prime \infty} / l_2^{\prime \infty} \approx 70\%$ 

![](_page_31_Picture_1.jpeg)

For each row, take two M1 observables as input, and predict the other two

| LO                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $M_1$                                                                       | $\delta \langle \hat{\mu}  angle_{	ext{total}}$                     | $\delta \langle \hat{\mu} \rangle_{\substack{\text{NLO}\\\text{strong}\\\text{inter.}}}$ | $\delta \langle \hat{\mu} \rangle^{2-B}_{\substack{\mathrm{NLO}\\\mathrm{magnetic}\\\mathrm{opert.}}}$ |
|--------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Z                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $\langle \hat{\mu}_{3H} \rangle$<br>$\langle \hat{\mu}_{3H} \rangle$        | 7% (1%)<br>13% (4%)                                                 | $\frac{3\%}{3\%} (11\%)$<br>$\frac{3\%}{25\%} (25\%)$                                    | 5% (10%)<br>10% (29%)                                                                                  |
| std<br>Exp<br>data | $\begin{array}{                                    $   | $\langle \hat{\mu}_d \rangle$<br>$\langle \hat{\mu}_d \rangle$<br>$Y'_{np}$ | $   \begin{array}{c}     1\% (1\%) \\     6\% (9\%)   \end{array} $ | $ \begin{array}{c} 0\% (0\%) \\ 2\% (2\%) \end{array} $                                  | $   \begin{array}{c}     1\% (1\%) \\     4\% (12\%)   \end{array} $                                   |

✓ What do we see here?

- ✓ The deuteron magnetic moment receives unnaturally small contribution
- $\checkmark \text{ The statistical analysis shows that } l_2^{\prime \infty} \text{ is consistent with 0.} \\ \Delta l_1^{\prime \infty} / l_1^{\prime} \approx 3\% \qquad \Delta l_2^{\prime \infty} / l_2^{\prime \infty} \approx 70\%$

Surprising! (different physics than pion-less expansion?)

![](_page_32_Picture_1.jpeg)

### Conjecture $l_2^{\prime\infty} = 0$ , *i.e.*, 2-body isoscalar interaction is at least N<sup>2</sup>LO

![](_page_32_Figure_4.jpeg)

![](_page_33_Picture_1.jpeg)

For each row, take <u>one</u> M1 observables as input, and predict the other two

Conjecture  $l_2^{\prime\infty} = 0$ , *i.e.*, 2-body isoscalar interaction is at least N<sup>2</sup>LO

|           | $l_1'^{\infty}/10^{-2}$ | $\langle \hat{\mu}_{^{3}\mathrm{H}} \rangle [\mathrm{NM}]$ | $\langle \hat{\mu}_{^{3}\mathrm{He}} \rangle [\mathrm{NM}]$ | $Y'_{np}$ |
|-----------|-------------------------|------------------------------------------------------------|-------------------------------------------------------------|-----------|
|           | 4.36                    | *                                                          | -2.10                                                       | 1.250     |
|           | 4.97                    | 3.00                                                       | *                                                           | 1.256     |
|           | 4.66                    | 2.99                                                       | -2.11                                                       | *         |
| Mean      | 4.7                     | 2.99                                                       | -2.11                                                       | 1.253     |
| std       | 0.6                     | 0.01                                                       | 0.01                                                        | 0.006     |
| %NLO/LO   |                         | 8%                                                         | 13%                                                         | 6%        |
| Exp. data |                         | 2.979                                                      | -2.128                                                      | 1.253     |

### ✓ What do we see here?

- ✓ Everything still works even if  $l_2^{\prime \infty} = 0$ :
  - ✓ natural convergence,
  - ✓ same order of magnitude of expansion parameter  $\epsilon \approx 6 13\%$

✓ Small STD on predictions and 
$$\frac{\Delta l_1^{\prime \infty}}{l_1^{\prime \infty}} \approx \epsilon^2 \approx 10\%$$

![](_page_34_Picture_1.jpeg)

"Our theory": pion-less EFT at NLO based on Z-parameterization

### **Operators:**

|     | <b>M</b> 1                             |
|-----|----------------------------------------|
| 1-b | $(\mu_{n,p}) \sigma, \sigma \tau^0$    |
| 2-b | $L_1 s^{\dagger} d, L_2 d^{\dagger} d$ |
| -   | N <sup>2</sup> LO                      |

Still need to assess theoretical uncertainty:

RG invariant - no cutoff dependence as a guide

Natural convergence: order by order

![](_page_34_Figure_9.jpeg)

![](_page_35_Picture_1.jpeg)

"Our theory": pion-less EFT at NLO based on Z-parameterization

Assessing theoretical uncertainties:

Take a generic observable:  $\langle M_1 \rangle = \langle M_1 \rangle_{\rm LO} \cdot \left( 1 + c_{M_1}^{\rm NLO} \cdot \delta + \mathcal{O}(\delta^2) \right)$ 

 $\checkmark$   $c_{M_1}^{\text{NLO}}$  should be natural.

"Usually", we would take  $\delta$  from a Naïve estimate of the theory:

✓ In pionless EFT The Naïve estimate is  $\delta \approx \frac{\gamma_t}{m_{\pi}} \approx \frac{1}{3}$ 

 $\checkmark \quad \text{We got } \delta \approx 6 - 13\%$ 

Surprising! (different physics than pion-less expansion?)

Let us estimate  $\delta$  from the results!

# 37

# **ELECTROMAGNETIC ANALOGUES TO THE WEAK OBSERVABLES**

"Our theory": pion-less EFT at NLO based on Z-parameterization

Assessing theoretical uncertainties:

Take a generic observable:  $\langle M_1 \rangle = \langle M_1 \rangle_{\rm LO} \cdot \left(1 + c_{M_1}^{\rm NLO} \cdot \delta + \mathcal{O}(\delta^2)\right)$ 

 $\checkmark$  Let us estimate  $\delta$  from the results!

- ✓ We take 3 measurements of  $a_{M_1^k}^{NLO} \approx 6, 8, 13\%$  from the NLO observables
- ✓ From <  $\mu_d$  >→ (N<sup>2</sup>LO/LO) ≈ (NLO/LO)<sup>2</sup> ~  $\delta_{\hat{\mu}_d}^2$ Thus (NLO/LO) ≈ 0.1
- ✓ And fluctuations in  $l_2^{\prime \infty} \rightarrow (N^2 LO/NLO) \approx 0.04 0.1$
- We use information theory to show that ratios of orders should be distributed log-normally to maximize information entropy.
- ✓ We use the "measurements" of  $a_{M_1^k}^{NLO}$  to assess the size of  $\delta$  and its standard deviations. The finite number of measurements → t-student

![](_page_37_Picture_1.jpeg)

"Our theory": pion-less EFT at NLO based on Z-parameterization

Assessing theoretical uncertainties:

Take a generic observable:  $\langle M_1 \rangle = \langle M_1 \rangle_{\text{LO}} \cdot \left( 1 + c_{M_1}^{\text{NLO}} \cdot \delta + \mathcal{O}(\delta^2) \right)$ 

 $\checkmark$  Let us estimate  $\delta$  from the results!

![](_page_37_Figure_7.jpeg)

![](_page_38_Picture_1.jpeg)

"Our theory": pion-less EFT at NLO based on Z-parameterization

Assessing theoretical uncertainties:

Take a generic observable:  $\langle M_1 \rangle = \langle M_1 \rangle_{\rm LO} \cdot \left( 1 + c_{M_1}^{\rm NLO} \cdot \delta + \mathcal{O}(\delta^2) \right)$ 

![](_page_38_Figure_6.jpeg)

Truncation error (relative to leading order)

![](_page_39_Picture_1.jpeg)

# ELECTROMAGENTIC OBSERVABLES OF A=2, 3 NUCLEI

- Perfect post-diction, within 1% theoretical uncertainty!
- Amazing precision and accuracy.
- Surprising:
  - Changes in Naïve pion-less EFT counting, by  $l_2^{\prime \infty} = 0$ .
    - Is this a result of the flow to very low energies of <u>chiral EFT</u>, where iso-vector pion leads to l<sub>1</sub><sup>'∞</sup> at NLO, while l<sub>2</sub><sup>'∞</sup> comes at N<sup>3</sup>LO?
  - Unnaturally small expansion parameter,  $\delta \approx 5 10\% << \frac{\gamma_t}{m_{\pi}} \approx \frac{1}{3}!$ 
    - Hinting different physics than pionless? Unitary expansion (van Kolck, König)? Wigner symmetry (Phillips, Vanasse)?
    - This is the origin of the "shell model" like behavior of these magnetic moments, while the wave functions are very far from shell model - Can this be extended to heavier nuclei?

![](_page_39_Figure_11.jpeg)

**x** 41

"Our theory": pion-less EFT at NLO based on Z-parameterization

![](_page_40_Figure_4.jpeg)

![](_page_41_Picture_1.jpeg)

# A PREDICTIVE AND VERIFIED THEORY, A CHECKLIST:

![](_page_41_Figure_3.jpeg)

A predicted increase of 2–6% over SFII

![](_page_42_Picture_1.jpeg)

# NEUTRINO FLUXES WITH PREVIOUS $S_{11}$ value

| Flux                    | Old composition SSM | New composition SSM | $\mathrm{Solar}^a$             |
|-------------------------|---------------------|---------------------|--------------------------------|
| $\Phi(pp)$              | $5.98(1 \pm 0.006)$ | $6.03(1 \pm 0.005)$ | $5.97^{(1+0.006)}_{(1-0.005)}$ |
| $\Phi(\text{pep})$      | $1.44(1 \pm 0.01)$  | $1.46(1 \pm 0.009)$ | $1.45^{(1+0.009)}_{(1-0.009)}$ |
| $\Phi(hep)$             | $7.98(1 \pm 0.30)$  | $8.25(1 \pm 0.30)$  | $19_{(1-0.47)}^{(1+0.63)}$     |
| $\Phi(^7\text{Be})$     | $4.93(1 \pm 0.06)$  | $4.50(1 \pm 0.06)$  | $4.80_{(1-0.046)}^{(1+0.050)}$ |
| $\Phi(^{8}B)$           | $5.46(1 \pm 0.12)$  | $4.50(1 \pm 0.12)$  | $5.16^{(1+0.025)}_{(1-0.017)}$ |
| $\Phi(^{13}N)$          | $2.78(1 \pm 0.15)$  | $2.04(1\pm0.14)$    | $\leq 13.7$                    |
| $\Phi(^{15}O)$          | $2.05(1 \pm 0.17)$  | $1.44(1 \pm 0.16)$  | $\leq 2.8$                     |
| $\Phi(^{17}\mathrm{F})$ | $5.29(1 \pm 0.20)$  | $3.26(1 \pm 0.18)$  | $\leq 85$                      |

![](_page_43_Picture_1.jpeg)

# **EFFECT OF NEW S**<sub>11</sub> **ON NEUTRINO FLUXES**

![](_page_43_Figure_3.jpeg)

**SOLAR NEUTRINO FLUXES FAVOR OLD COMPOSITION!** 

![](_page_44_Figure_1.jpeg)

![](_page_44_Figure_2.jpeg)

![](_page_45_Picture_1.jpeg)

# **SUMMARY**

- SOLAR PP-FUSION:
  - Controlled, perturbative calculations, with reliable order by order convergence, indicate an increase of 2-6% over the current standard!
  - Predicted neutrino fluxes dis-favor new solar composition assessments.
    - A new perspective on the solar composition problem, or a new solar neutrino problem?
  - Disagreement with  $\chi EFT$  calculations (at the 90% level), though they are still plagued by my mistake  $\odot$
- Perfect post-diction of A=2, 3 magnetic M1 observables, within 1% theoretical uncertainty!
- Surprises hint that something is weird in the pionless EFT description of these reactions:
  - Deviation from the naïve pion-less EFT counting of the magnetic interaction, by  $l_2^{\prime \infty} = 0$ .
  - Unnaturally small expansion parameter,  $\delta \approx 5 10\% << \frac{\gamma_t}{m_{\pi}} \approx \frac{1}{3}$  is the source of shell model behavior of M1 observables in A=2, 3 systems!